

Ain Shams University Faculty of Science Biochemistry department

Assessment of MicroRNAs as Biomarkers of Hepatitis C Virusassociated Hepatocellular carcinoma in Egyptian Patients

Thesis Submitted for the partial fulfillment of Master Degree of Science (M.Sc.) in Biochemistry

Rehab Abdel-Hameed Badawy Ali

(Demonstrator at Biochemistry Department, Faculty of Science, Ain Shams University, B.Sc., 2010)

Under supervision of Prof. Dr. Azza Ahmed Atef

Professor of Biochemistry Biochemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Abdel-Hady A. Abdel-Wahab

Prof. of Biochemistry & Molecular Biology & Head of Cancer Biology Department Cancer Biology Department, National Cancer Institute, Cairo University

Dr.Emad Khairy Ibrahim

Lecturer of Biochemistry
Biochemistry Department, Faculty of Science, Ain Shams University

2016

بسم الله الرحمن الرحيم

ولل رب ز دنی علماً

صدق الله العظيم

Dedication

I dedicate this study to my mother, father, sister, grandmother aunt and my uncle's soul for their continual and unflagging patience, sympathy and support offered to me during all my life stages. Thank you my family. Your love and encouragement have made possible whatever success I have experienced in my professional career.

Special cardial thanks are due to my lovely husband and son who suffered with me during this thesis and asking Allah to reward them as possible as I can. Thank you my love.

My thanks are due to my friends whose love and encouragement was the dynamo which gives me the power to complete this study.

Rehab Abdel-Hameid

Acknowledgement

First of all, I would like to express my deepest praise and gratitude to *Allah* for helping and directing me to the right way and helping me to bring this work to light.

Sincerely, I would like to express my deepest thanks and grateful appreciation to *Prof. Dr. Azza Ahmed Atef*, Professor of Biochemistry, Faculty of Science, Ain Shams University for her keen supervision, valuable guidance and encouragement; she offered deep experience and continuous support. Her advice and support are deeply appreciated, without her valuable supervision; this work would not come to light.

It is very difficult to express my limitless thanks and profound gratitude to *Prof. Dr. Abdel-Hady Ali Abdel-Wahab*, Head of Cancer Biology department, National Cancer Institute, Cairo University for his technical and scientific support in this work. I would like to thank him for his valuable support, sincere advices, and fruitful discussion throughout this study.

It is a pleasure to acknowledge with sincere gratitude and appreciation **Dr. Emad Khairy Ibrahim**, lecturer of Biochemistry, Faculty of Science, Ain Shams University, for his supervision, concrete support. I wish to thank him for all the time he devoted for me. His valuable encouragement, constructive criticism and support were very helpful to complete this work.

I would like to express my deepest respect and sincere gratitude to *Prof. Dr. Ekram Hamed,* professor of Interventional Radiology, Radio-diagnostic department, National Cancer Institute. for providing the HCC tissue samples used in this study.

My sincere thanks to my Professors and Colleagues in the **Biochemistry Department, Faculty of Science, Ain Shams University** for supporting me in this work. I also wish to express my deep thanks to all the *staff of Cancer Biology department, National Cancer Institute, Cairo University* for their cooperation and support during this study.

APPROVAL SHEET

Assessment of microRNAs as biomarkers of Hepatitis C Virus – associated Hepatocellular Carcinoma in Eyptian Patients

Submitted by

Rehab Abdel-Hameed Badawy Alí

B.Sc., Biochemistry, 2010
This thesis submitted to Biochemistry Department, Faculty of Science,
Ain Shams University

For the degree of Master of Science (in Biochemistry)
Has been approved by:

Prof. Dr. Emad Mahmoud Ibrahim El-Zayat

Professor of Molecular Physiology and Biotechnology Faculty of Science, Cairo University

1- Prof. Dr. Ehab Mustafa Moahmed Ali

Professor of Biocjemistry, Faculty of Science, Tanta University

2- Prof. Dr. Azza Ahmed Atef Mahmoud

Professor of Biochemistry, Faculty of Science, Ain Shams University

CONTENTS

Content	Page
Acknowledgement	
• List of Abbreviations	I
• List of Tables	VI
List of Figures	VIII
• Abstract	A
• Introduction	1
Aim of the work	4
Review of literature	5
I. Hepatocellular Carcinoma	5
1. Gender and age distribution	5
2. Geographic distribution	6
3. Etiology and risk factors	7
a) Cirrhosis	8
b) Hepatitis B Virus (HBV)	9
c) Hepatitis C Virus (HCV)	10
d) Aflatoxin	14
e) Alcohol	14
f) Diabetes Mellitus	15
4. Molecular Pathogenesis (Hepatocarcinogenesis)	15
5. Natural history and prognosis	19
6. Staging	20
7. Grading	20
8. Diagnosis of Hepatocellular carcinoma	21
a) Radiologic diagnosis	22
b) Pathologic diagnosis	23
c) Serum biomarkers	24
Alpha-Feto Protein (AFP)	24
 Des-γ-Carboxy Prothrombin (DCP) 	29
o Alpha-L-Fucosidase (AFU)	29
o Glypican-3	30

0	Golgi Protein-73	30
0	γ-glutamyl transferase (GGT)	32
0	Osteopontin	32
0	Annexin A2	33
0	Soluble urokinase plasminogen activator receptor	34
0	Midkine	34
0	AXL	35
0	Thioredoxins	36
0	Other markers	36
II	. MicroRNAs	40
1.	Discovery	40
2.	Biogenesis	43
3.	Regulation of biogenesis	45
4.	Regulation of release	46
5.	Circulating miRNAs	49
a)	Origin	49
b)	Stability	51
c)	Forms	51
d)	Functions	53
6.	miRNAs potential as biomarkers	56
7.	Circulating miRNAs in cancer	57
a)	miRNAs as oncogenes	58
b)	miRNAs as tumor-suppressor genes	58
8.	miRNA expression profiles in HCC	59
a)	Oncogenic miRNA in HCC	59
b)	Tumor suppressive miRNAs in HCC	62
c)	Clinical applications of miRNAs in HCC	63
•	Materials and Methods.	
I.	Subjects	67
1.	HCC Patient's selection (eligibility) criteria	68
2.	Study design and patients' samples	68
0	Patient samples	69

ü Blood samples	69
ü Tissue samples	70
II. Methods	71
1. Chemicals & Kits	71
2. Enzyme Linked Immuno-Sorbent Assay (ELISA)	72
1) Detection of Hepatitis C virus antibodies in human serum	72
2) Detection of Hepatitis B Surface Antigen (HBsAg) in Human Serum	76
3) Detection of Alfa Feto Protein (AFP) level in serum	81
4) Detection of Schistosoma mansoni IgG in serum	84
3. quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)	89
1) Extraction of Total RNA from blood samples	90
2) Extraction of Total RNA from tissue samples	95
3) Determination of total RNA concentration	99
4) Complementary DNA (cDNA) synthesis	
5) Determination of cDNA concentration and dilution of cDNA samples	
6) Quantitative (real-time) Polymerase Chain Reaction	102
4. Histopathological diagnosis	108
5. Statistical Analysis	108
• Results.	109
• Discussion.	140
• Summary	154
• References.	157
الملخص العربي •	i
المستخلص •	Í

List of Abbreviation

AASLD	American Association for the study of liver	
	disease	
ADAM10	A disintegrin and metalloprotease 10	
AFP	α-fetoprotein	
AFP-L3	lens culinaris agglutinin reactive fraction of AFP	
AFU	Alpha- L –fucosidase	
AGO	Argonaute family of proteins	
AKT	Protein kinase B	
ALB	Albumin	
ALT	Alanine amino transferase	
AP-1	Activator protein 1	
APC	Adenomatous polyposis coli	
AST	Aspartate amino transferase	
AUC	Area Under Curve	
BCL2	B cell lymphoma 2	
BMF	proapoptotic protein B-cell lymphoma	
DMI	2-modifying factor	
C.elegans	<u>Caenorhabditis</u> <u>elegans</u>	
cdk	Cyclin-dependent kinase	
CDKI	Cyclin dependent kinase inhibitor	
cDNA	complementary Deoxyribonucleic acid	
CEA	Carcinoembryonic antigen	
Cip/Kip	CDk interacting protein/ Kinase inhibitor protein	
CLD	Chronic liver disease	
CSDC2	cold-shock domain-containing protein C2	
Ct	Comparative Cycle threshold	
CT	Computed Tomography	
CYR61	Cysteine-rich angiogenic inducer 61	

DCP	Des-gamma-carboxyprothrombin	
DM	Diabetes Mellitus	
DNA	Deoxyribonucleic acid	
EASL	European Association for the Study of Liver	
EDRN	Early Detection Research Network	
EGF	Epidermal growth factor	
ELISA	Enzyme Linked Immunosorbent Assay	
ERK	Extracellular signal related kinase	
Exp 5	Exportin-5	
FDA	Food and Drug Administration	
FNA	Fine needle aspiration	
GGT	Gamma-glutamyl transferase	
GP73	Golgi protein 73	
GPC3	Glypican-3	
HBeAg	hepatitis B e antigen	
HBsAg	Hepatitis B surface antigen	
HBV	Hepatitis B virus	
HCC	Hepatocellular carcinoma	
HCCR	Human cervical cancer oncogene	
HCV	Hepatitis C virus	
HGF	Hepatocyte growth factor	
НН	Hereditary Hemochromatosis	
HIV	Human Immuno-deficiency Virus	
HNF4A	Hepatocyte Nuclear Factor 4 Alpha	
HOXD10	Homeobox D 10	
HRPO/HRP	Horse Raddish Peroxidase	
Ig	Immunoglobulin	
IGF	insulin-like growth factor	
IGF-II	insulin-like growth factor-II	
MAP2K3	Mitogen-activated protein kinase-kinase 3	

MAPK14	Mitogen activated protein kinase	
MASPIN	Mammary Serine Protease Inhibitor	
MDK	Midkine	
MECC	Middle East Cancer Consortium	
Mev	Multiple Experiment Viewer	
miRISC	RISC loading complex	
miRNAs	microRNAs	
MMP9	Matrix metalloproteinase 9	
MRI	Magnetic resonance imaging	
mRNAs	messenger RNAs	
mTOR	mammalian Target Of Rapamycin	
MVB	multivesicular body	
MVs	Microvesicles	
MYC	Myelocytomatosis viral oncogene	
NAFLD	Non-alcoholic fatty liver disease	
NASH	Non-alcoholic steatohepatitis	
NCI	National cancer institute	
NPM1	Nucleophosmin 1	
OD	Optical density	
OLT	Orthotopic liver transplant	
OPN	Osteopontin	
PAK4	P-21 activated kinase 4	
PAT	Parenteral antischistosomal therapy	
PCD4	programmed cell death 4 protein	
PCR	Polymerase chain reaction	
PDCD4	Programmed Cell Death Protein 4	
PDGFR	platelet-derived growth factor receptor	
PI3K	Phosphatidyl Inositide 3 kinase	
PIVKA II	Prothrombin induced by vitamin K absence II	
PKm2	Pyruvate Kinase muscle isozyme 2	

PPP2R2A	Protein-coding, protein phosphatase 2A subunit B	
Pre-miRNA	Precursor miRNA	
Pri-miRNA	Primary miRNA	
PSA	prostate specific antigen	
PTEN	phosphatase and tensin homolog	
qRT-PCR	quantitative Reverse Transcription –Polymerase	
qK1-FCK	Chain Reaction	
Ras	<u>Ra</u> t <u>s</u> arcoma	
Rb	Retinoblastoma	
REC	Research Ethics Committee	
RHOB1	Ras-Homology gene family, member B	
RISC	RNA-induced silencing complex	
RNA	Ribonucleic acid	
RNAa	RNA activation	
RNAi	RNA-mediated interference	
RNUX2	Runt-related transcription factor 2	
ROC-curve	Receiver Operating Characteristics curve	
RT	Reverse transcription	
SCCA	Squamous cell carcinoma antigen	
SELDI-	Surface-enhanced laser desorption ionization time-	
TOF MS	of- flight mass spectrometry	
SIRT 7	Sirtuin 7	
Snail	Family of Zinc-finger proteins(transcription factor)	
snoRNAs	small nucleolar RNAs	
snRNAs	small nuclear RNAs	
SPRY2	Sprouty 2	
SPSS	Statistical Package for Social Science	
STAT3	Signal transducer and activator of transcription 3	
suPAR	Soluble urokinase plasminogen activator receptor	
TAAs	Tumor-derived autoantibodies	
·		

TCF4	Transcription factor 4
TFs	Transcription factors
TGFB1	transforming growth factor β1
TIMP3	Metalloproteinase inhibitor 3
TMB	Tetramethylbenzidine
TNFα	Tumor necrosis factor α
TRAIL-	TNF-related apoptosis-inducing ligand-
TRXs	Thioredoxins
US	Ultrasound
UTRs	Untranslated regions
VEGFR	Vascular endothelial growth factor receptor
v-Raf	Virus induced rapidly accelerated Fibrosarcoma
WHO	World health organization
2DE	2-dimension gel electrophoresis

List of Tables

Table	Table title	Paga No
No.	Table title	Page No.
	Review of literature	
1	Diagnostic value of AFP as a HCC	27
1	biomarker	27
2	Evaluation of HCC serum markers	39
3	Criteria of an ideal biomarker	57
	Subjects and methods	
1	The main chemicals and kits used	71
2	The contents of miRNeasy	91
2	Serum/plasma kit	71
3	The contents of miScript II RT Kit	100
4	Reverse-transcription reaction components	101
5	The contents of miScript SYBR® Green	102
3	PCR Kit	102
6	Preparation of the reaction mix	103
7	The real-time cycler program	104
	Results	
1	Characteristics of the patients' groups	110
1	involved in this study	110
2	Clinico-pathological data of HCC patients	111
3	The expression levels of the studied	113-114
	miRNAs in HCV Serum samples	113 114
4	The expression levels of the studied	117
4	miRNAs in HCC serum samples	11/
5	The expression levels of the studied	120
	miRNAs in HCC Tissue samples	120
6	The mean fold changes of the different	123
J	studied miRNAs in HCV (serum) and	120

	HCC (serum & tissue) patients	
	The expression levels of the studied	
7	microRNAs in serum of HCV and HCC	127
	patients	
	Correlation between the relative expression	
8	levels of miR-106b & miR-222 with	129
	clinical data	
9	Combinatorial ROC analysis of miR-106b	135
9	and miR-222 relative gene expression	133
	Diagnostic values of miR-106b, miR-222	
10	and AFP to distinguish between HCV and	139
	НСС	