

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Cairo University Faculty of Computers and Information Information Technology Department

x12 0P

Enhancing Mobile Agents Performance in Distributed Systems Environment

A Dissertation Submitted in Partial Satisfaction in the Requirements for the Degree of Doctor of Philosophy In Information Technology

> By Yasser Kamal Ali Abo mandour

Under the Supervision of
Prof. Dr. Sanaa El Ola Hanafi Ahmed
Vice Dean for Education and Students Affairs

A.Prof.Dr. Hesham N. Elmahdy Information Technology Department

Cairo University Faculty of Computers and Information

Enhancing Mobile Agents Performance in Distributed Systems Environment

A Dissertation Submitted in Partial Satisfaction in the Requirements for the Degree of Doctor of Philosophy in Information Technology

By Yasser Kamal Ali Abo mandour

Examiners

Prof. Dr. Abd ELbadee Mohamed Salem

Prof.Dr. Sanna ELola Hanafi Ahmed

Prof.Dr. Imane Aly Saroit Ismail

Dr. Hesham Nabih ELmahdy Hesha-

Signature

Sovate

Imane A

Abstract

Mobile agents are groups of executing objects that can migrate from node to node in a heterogeneous network. Mobile agent systems offer advantages such as better performance, lower usage of network bandwidth, and asynchronous processing. The migration of agents comprises the transport of data, code, and execution state from one node to another. In large scale communication, agents have to be generated frequently and dispatched to the network, thus they will certainly consume a certain amount of bandwidth of each link in the network. If there are a lot of agents' migrations through one or several links at the same time, they will introduce much transferring overheads to the links. Eventually, these links will be busy and indirectly block the network traffic. Therefore, there is a need to develop routing algorithms in order to control the traffic load

In this thesis, first we proposed mobile agent-based routing algorithm (MARA), we investigated how agents should behave if they have to set their decisions on possibly known traffic information. We presented agents migration processes based on decision tree on known traffic information. We compared performance evaluation of proposed mobile agent based routing algorithm (MARA) with existing solution (e.g. Open Shortest Path First (OSPF) routing algorithm). Experimental results were applied based on three cases, case one, when all nodes send a fixed numbers of agents to a certain node in a network. Case two, when running a fixed numbers of agents on a varying numbers of nodes, and Case three when running a varying numbers of agents on a fixed numbers of nodes.

The simulation results showed that our purposed solution (MARA) achieve performance in dynamic network better than existing solution (OSPF).

The second contribution in this thesis was presented to solve the problem of individual agents working in isolation. The contribution is done by finding the optimization of mobile agent collaboration effect. We used Reinforcement learning algorithm to change

mobile agent from random effect to organized effect. Our experiments tested three different approaches covering the movement of agents. First we implemented "random" agents, which simply move to a random adjacent node every update. Second we implemented "Organized" agents, which are more sophisticated, choosing at each time step to move to an adjacent node that they have never visited or have visited least recently The third types of agents, "smart" agents, also move to the nodes that have not been visited before, but they use both their own experience and learned data from their peers in deciding which nodes to move to.

We developed simulation models based on planned implementing a discrete event scheduler,. In order to compare results across population sizes and algorithms, we chose a single connected network consisting of 145 nodes with 1850 edges. The simulation results shows that when two random agents interacting and learning from each other do almost twice as well as one alone. And while two organized agents working together are better than two random agents by more than six-fold, when the population size increases to 100 agents the organized agents finish 32% more quickly than the random agents. And 10 smart agents map the graph in 245 time steps on average, while ten organized agents take 271 time steps to finish.

Finally, interoperability optimization was produced; we introduced a framework for mobile agent integrated with web services. It can be considered as a Gateway, it is matter of fact a web application running within some servlet container. From the other point of view it is possible to consider the Gateway as a whole servlet container. It serves as an execution environment for Gateway Agents. The Gateway Agent does the actual transition from an agent service to a web service for the concrete Target Agent. We presented a Mobile agent annotated with metadata to describe services, and agent life-time is bounded to a service request.

Acknowledgements

I bow to **ALLAH** in gratitude of his favors on me, that he granted me the ability and the patience to finish this work on a level that I deem it will please the reader. at this point, I would like to take the opportunity to express my deep apparition to many people who helped me in many ways completing this work.

I would like to express my gratitude to my supervisor Professor Sanaa El Olla Hanfy Ahmed for her assistance and her encouragement. I owe a great deal to my supervisor Assoc. Professor Hesham Elmahdey for his kindly support and helpful guidance.

I would like to extend my thanks to my family, my mother and father. Words can not express my gratitude to my wife and my children, they support me long days.

Finally I would like to thank Professor Hesham El-Rewini the Chair of the Department of Computer Science and Engineering, School of Engineering, Southern Methodist University, Dallas, Texas, USA for his kindly offer to participate three months in his lap "Parallel, Distributed, And Mobile Computing Lab (PDA Mobile Lab)". I would like to thank all PDA lab members, especially Rabie Ramadan, Alaa Al-Nawaiseh, and Manal Houri, for not only helping me in technical matters, but also for their friendship.

Table of Contents

Abstract	1
Acknowledgement	iv
Table of Contests	v
List of Figures	ix
List of Tables	X
1. Introduction	1
1.1 Motivation	1
1.2 Scope and Plan of Works	4
1.3 Thesis Structure	5
2. Mobile agents	6
2.1 Mobile Agents	6
2.2 Mobile Agent Principales	8
2.3 Agent Migration Classifications	13
2.4 Outline of Agent Standards	14
2.4.1 Mobile Agent System Interoperability Facility	14
2.4.2 Foundation for Intelligent Physical Agents	16
2.5 Mobile Agents Platforms	20
2.5.1 Telescrip	20
2.5.2 Aglets	22
2.5.3 Voyager	24
2.5.4 Grasshopper	25
2.6 Quality Requirements for Mobile Agent Systems	26
2.6.1 Interoperability	26
2.6.2 Scalability	2
2.6.3 Mobility	2'
2.6.4 Security	2

2.6.4.1 Confidentiality	29
2.6.4.2 Integrity	30
2.6.4.3 Accountability	30
2.6.4.4 Availability	31
2.6.4.5 Robustness	31
3. Related work	33
3.1 Routing Algorithms	33
3.1.1 Routing strategy/policy	33
3.1.2 Design doctrine	36
3.1.3 Ant Colony Optimization (ACO) Routing Algorithms	38
3.1.3.1 Important Elements of ACO in Routing	38
3.1.3.2 Stigmergy	37
3.1.3.3 Pheromone Control	39
3.1.4 Ant-Based Control (ABC) for Circuit Switched Network	ks 39
3.1.5 Ant-Based Control (ABC) for Packet Switched Networ	ks 42
3.1.6 AntNet	43
3.2 Mobile Agents Collaboration	46
3.2.1 Q-learning and Collection Agents	47
3.2.1.1 Passive Learning	47
3.2.1.2 Active Learning	48
3.2.2 Mobile Agents Collaboration Literal Review	48
3.3 Mobile Agents and Web Services Integration	50
3.3.1 Web Services	49
3.3.2 Mobile Agents and Web Services Integration Review	53
4. Mobile Agents Based Routing Algorithm (MARA)	53
4.1 Description of Mobile Agent-Based Routing Algorithm	
4.1.1 Routing strategy	56
4.1.2 Data structures	57
4.1.3 Mobile Agent-Routing for query processing	58

4.1.4 Mobile Agent Exploring Strategy	
4.2 Network Traffic Classification	
4.2.1 Data Collection	63
4.2.1.1 Data collection Mechanism	64
4.2.2 Measurement Setup	68
4.2.3 Traffic Categories	71
4.2.3.1Traffic Index	72
4.2.3.2 Response Time	72
4.2.3.3 Packet Loss	72
4.2.4 Object Classifications	72
4.2.5 Naïve Bayes Approach	74
4.2.6 Data Set Analysis Example	77
4.3 Routing Based Decision Tree Learning	84
4.3.1 ID3 Decision Tree Learning Algorithm	84
4.3.1.1 Entropy	84
4.3.1.2 Routing Based Decision Tree Example	87
4.4 Multi-Agent Cooperation Model	90
4.4.1 Mobile Agents Learning Model	90
4.4.2 The Q-Learning Algorithm	91
4.4.3 The Q-Learning Algorithm Example	92
5. Mobile Agent Based Routing Algorithm (MARA) Evaluation	103
5.1 Mobile Agent Based Routing Algorithm Analytical Model	103
5.2 Routing Policy Model	106
5.3 Simulation Design	109
5.3.1 Host Model	111
6.3.2 Link Connectivity Model	111
5.3.3 Data Transport Model	111
5.3.4 Routing Model	111
4.4 Simulation Result and Analysis	111

5.5 Mobile Agents Learning Model Evaluation		
5.5.1 Single Agent Results	118	
5.5.2 Effect of Collaboration	119	
5.5.3 Effect of Population Size	120	
6. Mobile Agent Interoperability Optimization	123	
6.1 Mobile Agent Framework Fundamental Blocks	123	
6.1.1 Agent	124	
6.1.2 Host	125	
6.1.3 Naming Services	126	
6.2 Mobile Agent and Web Services Integration	127	
6.2.1 Service Provision	128	
6.2.2 Web Services and Mobile Agent Mapping	128	
5.2.3 XML and Agent Communication	130	
6.2.3.1 FIPA ACL	130	
6.2.3.2 Xml Encoding	130	
6.3 Framework Implementation Prototype	132	
6.4 Building the Application	136	
6.4.1 Exposing the Web Service Using Metadata Annotations	136	
6.5 Creating a Client Application	133	
7. Conclusion and Future Work		
Appendices	144	
Appendix A MARA Algorithm Pesudo code		
References		

References

List of Figures

Figure 2-1	Sequence of Traditional Remote Procedure Cans	,
Figure 2-2	Remote Programming	10
Figure 2-3	Migration Process Steps	11
Figure 2-4	MASIF Architectures	15
Figure 2-5	FIPA Reference Model	18
Figure 2-6	Domain Concept of FIPA	20
Figure 3-1	Network Graph Representation	40
Figure 3-2	Web Services Basic Components	52
Figure 4-1	Routing Table	57
Figure 4.2	Procedures of MARA algorithm	61
Figure 4.2	Procedures of MARA algorithm continue	62
Figure 4-3	Network Topology	58
Figure 4-4	Traffic Captures at End Points	69
Figure 4.5	Measurement Parameters Option	69
Figure 4.6	Measurement Data Samples	70
Figure 4-7	Network Traffic Data	70
Figure 4-8	Examples of tow Normal Distribution	76
Figure 4.9	Standard Data Partition	79
Figure 4.10	Naïve Bayes Dialog Box	80
Figure 4.11	Prior Classes Probabilities Dialog box	80
Figure 4.12	Training and Validation Score Data	81
Figure 4.13	Outputs of Naive Bayes	82
Figure 3.14	Classification of Validation Data	83
Figure 3-15	Extremist of Interest of Network Traffic Datasets	89
Figure 3-16	Best Path for Agent Migration	89
Figure 4.17	Active Learning Reinforcement Techniques	91
Figure 4.18	Network Platform Example	93
Figure 4.19	State Diagram of Network Graph	93
Figure 4.20	Stats and Actions of Agents	94
Figure 4.21	Q-learning Algorithms	96
Figure 3-22	Algorithm to Utilize the Q Matrix	97