The Accuracy of Preoperative Combined Ultrasonography and Sestamibi Scintigraphy in Preoperative Localization of Hyperparathyroidism

Thesis
Submitted for the partial fulfillment of MD degree in
General Surgery

By:

George Ibrahim Salama

Master degree in general surgery Ain Shams University

Under supervision of

Prof. Dr. Abdel Wahab Mohamed Ezzat

Professor of General Surgery Faculty of Medicine-Ain Shams University

Prof.Dr. Gamal Fawzy Samaan

Assistant Professor of General Surgery Faculty of Medicine-Ain Shams University

Prof.Dr. Mohamed Mahfouz Mohamed

Assistant Professor of General Surgery Faculty of Medicine-Ain Shams University

Prof .Dr.Walid Abdel El Hameed Hetta

Assistant Professor of diagnosticRadiology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Abdel Wahab Mohamed Ezzat** Professor of General Surgery, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Gamal Fawzy Samaan**, Assistant Professor of General Surgery, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr. Mohamed Mahfouz Mohamed**, Assistant Professor of General Surgery, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

I owe much to Dr. Walid Abdel El Hameed Hetta Assistant Professor of diagnostic Radiology Faculty of medicine-Ain Shams University for his continuous guidance, encouragement during the progress of this work and direct supervision.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

George Ibrahem Salama

Contents

List of A	Abbreviations	i
List of T	ables	iii
	igures	V
Introdu	ction and Aim of the Work	1
Review	of Literature	6
I.	Anatomy and Embryology of parathyroid gland.	6
II.	Physiology of parathyroid gland	12
III.	Pathophyiology and Pathogensies	of
	Hyperparathyroidism	19
IV.	Pathology of hyperparathyroidism	34
V.	Management of primary hyperparathyroidism	42
Patients	and methods	92
Results		101
Discussi	on	120
Summar	y and conclusion.	127
Reference	ces	129
Arabic S	lummary	

List of Abbreviations

3D CT : Three dimensional CT

4D CT : Four dimensional CT

BNE : Bilateral neck exploration

BUN : Blood urea nitrogen ratio

Ca : Calcium

CaR : Calcium ion receptor

CKD : Chronic kidney disease

CrCl : Creatinine clearance

CT : Computed tomography

CUA : Calcific uremic arteriolopathy

CVD : Cardiovascular disease

ESRD : End stage renal disease

FHH : Familial hypocalciuric hypercalcemia

FIHPT : Familial isolated hyperparathyroidism

HBS : Hungry bone syndrome

HPTH : Hyperparathyroidism

HPT-JT : Hyperparathyroidism-jaw tumor syndrome

IPTH : Intra-operative intact parathyroid hormone

Ki _67 : Ki _67 antibody

Lt : Left

MEN : Multiple endocrine neoplasia

List of Abbreviations (Cont.)

MEN1 : Multiple endocrine neoplasia type 1

MEN2A : Multiple endocrine neoplasia type 2A

MGD : Multiple gland disease

MIRP : Minimally invasive radio-guided

parathyroidectomy

MRI : Magnetic resonance imaging

MTC : Medullary thyroid cancer

NIH : National Institute of Health

PA : Parathyroid adenoma

PET : Positron emission tomography

PHPT : Primary HPT primary hyperparathyroidism

PT-CA : Parathyroid carcinoma

PTH : Parathormone hormone

PTHrP : Parathyroid hormone-related protein

ROLL : Radioguided occult lesion Localization

Rt : Right

SHP : Secondary hyperparathyroidism

SPECT : Single photon emission computed tomography

SVS : Selective parathyroid venous sampling

UNE : Unilateral neck exploration

US : Ultrasonography ultrasound

VATS : Video-assisted thoracoscopic surgery

List of Tables

Table	Title	Page
1	Genetics and pathology of autosomal	38
	dominant familial hyperparathyroidism	
	syndromes	
2	The clinical mainfestation of PHPT	44
	classified by organ system	
3	Imaging modalities	60
4	Causes of false postive TC 99m sestamibi scan	67
5	The sex distribution	101
6	Age distribution	102
7	Clinical presentation	103
8	Preoperative serum calcium and	104
	parathyroid hormone levels	
9	Routine pre operative labatory work up	105
10	Type of hyperparathyroidism	106
11	Finding of pre operative ultrasonography	107
12	Pre operative sestabimi scan results .	108
13	Procedures were done	109
14	Intraoperatve complications	110
15	Operative time and length of wound	111
16	Monitoring post operative calcium,	112
	parathyroid hormone level and pain	
	score.	
17	Post operative complications and	113
	cosmetic outcome	
18	Results of pathological results.	114
19	Comparison between preoperative and	115
	postoperative parathyroid hormone	
	levels	
20	Efficacy of preoperative localization	116

List of tables (Cont.)

Table	Title	Page
21	Accuracy of combined US and sestabimi	116
	scan	
22	Accuracy of US alone	117
23	Accuracy of sestabimi scan.	118
24	Comparison between accuracy of ultrasound and sestabimi scan	119

List of Figures

Fig.	Title	Page
1	Development of parathyroid glands	7
2	Anatomical distribution of the	8
	parathyroid glands	
3	Normal adult parathyroid gland	11
4	Electron micrograph showing chief cells	11
5	Diagram of the average distribution of	12
	calcium in the body	
6	The interplay of parathyroid hormone	13
	(PTH), vitamin D, and calcitonin on	
	calcium and phosphorus regulation at	
	specific target organs	
7	Diaghram demonstrate calcium	15
	regulation	
8	Parathyroid adenoma, chief cell type	35
9	Secondary parathyroid hyperplasia	36
10	Hyperplastic parathyroid tissue after	40
	autotransplantation	
11	Radiologic changes typical of classic	57
	primary hyperparathyroidism	
12	Sagittal (a) and transverse (b) images of	61
	a parathyroid adenoma by ultrasound	
13	Intrathyroidal parathyroid adenoma by	62
	ultrasound	
14	Colour Doppler image	63
15	High cervical ectopic parathyroid	64
	adenoma	

List of Figures (Cont.)

Fig.	Title	Page
16	A planar spot image of the neck region	65
17	Serial planar images of the neck region	66
	obtained immediately p.i., subsequently	
	followed by images obtained at 15, 30,	
	45, 60 and 120 min p.i	
18	Transaxial, sagittal and coronal slices	68
	from an integrated SPECT/CT for	
	preoperative localization of a potential	
	PA	
19	Eutopic parathyroid adenoma.and	70
	Ectopic parathyroid adenoma	
	byContrast-enhanced CT scan)	
20	T1-weighted magnetic resonance (MR)	71
	image of a left para-oesophageal	
	parathyroid adenoma characterized by	
	intermediate to low signal intensity T2-	
	weighted MR image of the same patient	
	and lesion depicted in showing a lesion	
	with a bright, hyperintense signal	
21	Highly selective catheterization of this	72
	vein and the superimposed PTH values	
	(pg/mL)	
22	Algorithm for identification of the	81
	missing parathyroid gland	
23	Anathesia of operation	93
24	Positioning of the patient	93
25	Cerivical incision	94

List of Figures (Cont.)

Fig.	Title	Page
26	Finger retraction using dry gauze is	95
	gentle on the thyroid tissue	
27	Identification of parathyroid gland.	96
28	Identification of parathyroid gland by	97
	saline test	
29	Identification of the recurrent laryngeal	98
	nerve	
30	Closure of the Neck Incision	99
31	Gender Distribution	101
32	Type of hyperparathyroidism	106
33	Pre operative sestabimi scan results	108
34	Procedures were done	110
35	Intraoperatve complications	111
36	Cosmetic outcome	114
37	Comparison between preoperative and	115
	postoperative parathyroid hormone	
	levels	
38	Comparison between preoperative and	115
	postoperative calcium levels	
39	Accuracy of combined US and sestabimi	117
	scan	
40	Accuracy of US	117
41	Accuracy of sestabimi scan	118

Introduction

Hyperparathyroidism is a serious metabolic disorder. The incidence of hyperparathyroidism is about one in 20,000 people. It is fairly uncommon actually sort of rare, thus most surgeons only see one or two patients per year or two years. It occurs in female more than male and average age is about 58 years old but it can occur at any age. The types of hyperparathyroidism are primary, secondary and tertiary (*Russell et al.*, 2006).

Most cases of primary hyperparathyroidism are caused by a single parathyroid adenoma (89%). Other causes include hyperplasia of all four glands (6%), double adenomas (4%), and, rarely, parathyroid carcinoma. In most instances, parathyroid adenomas are sporadic. There is an increased incidence of parathyroid hyperplasia in multiple endocrine neoplasia type I and multiple endocrine neoplasia type IIA, although the incidence of these disorders is not sufficiently high to justify screening in all instances of primary hyperparathyroidism (*Haciyanli et al.*, 2006).

Another rare cause of primary hyperparathyroidism is hypercalcemia, hypocalciuric familial an autosomal dominant condition that produces PTH-dependent It is associated with mild parathyroid hypercalcemia. hyperplasia. Primary hyperparathyroidism is considered to be present when serum calcium is elevated and Parathyroid (PTH) is increased or inappropriately normal (Krausz et al., 2008).

Secondary hyperparathyroidism is the excessive production of PTH in response to low blood calcium levels caused by conditions such as renal failure and vitamin D deficiency. The two main strategies for management of this disease include replacement of vitamin D with oral analogues

1

 $(1\alpha\text{-calcidiol})$ and reduction in serum phosphate. While in tertiary hyperparathyroidism the parathyroid glands become autonomous and function independently of calcium levels. This condition is usually associated with increased levels of PTH, calcium, alkaline phosphatase and phosphate (*Burkey et al.*, 2007).

There are numerous, often non-specific, clinical manifestations of hypercalcemia. The most common presenting symptoms include fatigue, hypertension, bone pain, muscle weakness, bilateral recurrent renal stones, pathological fractures and psychiatric illness (*Ruda et al.*, 2005).

The development of unilateral and focused surgical approaches over the past decade, however, has made it even more imperative for imaging to accurately locate abnormal parathyroid glands before surgery. With optimized preoperative mapping, the success rate of these less invasive techniques equals that of the traditional bilateral approach (*Baliski et al.*, 2005).

Several noninvasive preoperative localization modalities are available, including technetium Tc 99m sestamibi scintigraphy, ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and thallous chloride Tl 201-technetium Tc 99m pertechnetate subtraction scanning. Most recently, four-dimensional CT and positron emission tomography (PET)-CT fusion studies have also been used with success for parathyroid localization (*Stephen et al., 2006*).

Sestamibi with ^{99m}Tc is the most commonly used radiotracer for imaging the parathyroid glands and has been extensively studied in the setting of hyperparathyroidism. Sestamibi is taken up by both the thyroid and parathyroid glands, but adenomatous and hyperplastic parathyroid tissue

shows more avid uptake of the radiotracer and often retains the radiotracer longer than adjacent thyroid tissue. Thus, initial planar images obtained shortly after the administration of radiotracer will show both thyroid and parathyroid tissue. Asymmetric foci of increased radiotracer uptake on early images can be seen, representing abnormal parathyroid tissue superimposed on the normal thyroid. Delayed images, approximately after obtained 2 hours radiotracer administration, are acquired to look for foci of retained radiotracer characteristic of hyperfunctioning parathyroid tissue (Yao et al., 2007).

Ultrasonography and ^{99m}Tc-Sestamibi scintigraphy are the dominant imaging techniques for preoperative location of hyperparathyroidism. Numerous studies comparing these techniques suggest similar sensitivities and specificities. Localization accuracy is also improved when both studies are obtained preoperatively (*Melton et al.*, 2005).

A preoperative approach that combines both the anatomic information of sonography and the physiologic information of scintigraphy has been shown to predict the presence and location of solitary adenomas more accurately than either technique alone. *Siperstein et al.* (2008) predicted 79% surgical success in their prospective study combining both techniques versus 74% for sonography and 68% for scintigraphy alone. *Solorzano et al.* (2005) who advocate preoperative sonography as the only preoperative location test, found that, used separately, sonography and scintigraphy each correctly predicted uniglandular disease in 77% of patients, but this increased to 90% when the techniques were combined (*Krausz et al.*, 2008).

Over the past decade, the surgical treatment of primary hyperparathyroidism has changed from predominantly a bilateral approach with four-gland explorationin all cases to unilateral and focused approaches guided by preoperative imaging showing single adenomas. Sonography and ^{99m}Tc-sestamibi scintigraphy have assumed dominant roles in preoperative localization of solitary adenomas, and focused approaches based on concordant findings from both techniques have cure rates equal to that of the traditional approach (*Grant et al.*, 2008).

Aim of the work

The aim of the work is to detect the importance of combination of Ultrasonography and Sestamibi scintigraphy in the preoperative localization of patients with hyperparathyroidism to increase the adoption of minimally invasive parathyroidectomy techniques.