

Ain Shams University

Faculty of Engineering

Design and Production Engineering Department

Mechanical Behavior of Hybrid Composites

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Engineering

by

Noha Ramadan Abdel Hamid

Bachelor of Science in Mechanical Engineering

Design and Production Engineering

Faculty of Engineering, Ain Shams University, June 2011

Supervised by

Prof. Dr. Mohamed Hazem Abdellatif

Associate Prof. Dr. Rawia Hamouda

Associate Prof. Dr. Iman Taha

Cairo - (2015)

Ain Shams University

Faculty of Engineering

Design and Production Engineering Department

Mechanical Behavior of Hybrid Composites

by

Noha Ramadan Abdel Hamid

Bachelor of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, June 2011

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Tarek Ahmed Fouad Khalifa	
Mechanical Power, Benha University	
Prof. Dr. Hamed Ibrahim El-Mously	
Design and Production, Ain Shams University	
Prof. Dr. Mohamed Hazem Abdellatif	
Design and Production, Ain Shams University	
	Date:

Statement

This thesis is submitted in partial fulfillment for the degree of Master of Science in Mechanical Engineering, to Faculty of Engineering, Ain Shams University. The author carried out the work included in this thesis at the laboratories of the Design and Production Engineering department, Faculty of Engineering, Ain Shams University. No part of this thesis has been submitted for a degree or qualification at any other university.

Noha Ramadan Abdel Hamid

Signature:		
Date:		

Researcher Data

Name : Noha Ramadan Abdelhamid

Date of birth : 12/2/1989

Place of birth : Cairo

Last academic degree : Bachelor of Science

Field of specialization : Design and Production Engineering

University issued the degree : Faculty of Engineering- Ain Shams University

Date of issued degree : 2011

Current job : Demonstrator

Thesis Summary

Natural Fibers (NF) are widely used as reinforcement in polymer based composites. Their main advantages lie in their availability from renewable resources at low prices, in addition to the relatively low density and high specific properties in contrast to synthetic fibers. Natural fiber composites have been found to exhibit suitable mechanical properties for nonstructural applications. However, when it comes to high strength (structural) applications, the specific properties of natural fibers are typically not sufficient. One potential method for solving some of the drawbacks related to natural fibers is to hybridize them with synthetic reinforcements with the goal of improving overall composite mechanical properties.

In this respect, this research aims to investigate the potential improvement in mechanical and erosion characteristics of jute fiber reinforced epoxy composites through the hybridization with SiC particles using the VARI technique.

In order to achieve this aim, physical and mechanical properties of jute fabric were characterized. As a preparation for the reinforcement of epoxy matrix, fibers were treated with sodium hydroxide. A number of conditions were examined to find the optimum alkali treatment conditions that result in best mechanical behavior of the jute-epoxy composites. In a second stage, this optimum fiber treatment was further adopted for the preparation of the hybrid jute-SiC epoxy composites. Different volume fractions of 2, 4, 6 and 8 % SiC were incorporated into the composite to investigate the effect on mechanical and physical properties. Further, the erosion wear of the prepared hybrid composites was investigated.

The homogeneity of SiC particle distribution was also investigated. It is anticipated that the homogeneous distribution of the particles within the textile reinforcement is a function of woven fabric mesh and particle size as well as the infiltration length in the VARI process. This is validated through the alteration of fabric type and particle size, and was examined through a number of characterization methods.

Generally, analysis of variance (ANOVA) techniques were applied to make statements about the statistical significance of the measured characteristics. Proof

of concept is provided through the manufacture of a small scale wind turbine blade from optimum composite compositions that were considered.

These topics are described in the various chapters of the thesis, as follows:

Chapter 1 introduces an overview for the recent works in the field of natural fiber composites.

Chapter 2 presents a literature review that is the base of knowledge already available in the field of natural fibers, their composite and hybrid materials.

Chapter 3 presents the main objective of this research and summarizes the work plan that has been followed to achieve the aim of the research.

Chapter 4 provides a detailed description of the experimental procedures used in the present study. First, a description of the used materials and their main properties is presented. Further, details about the experimental procedures for the characterization of jute properties and the chemical treatment are described. Finally, details of composite and hybrid composite fabrication as well as the characterization methods are depicted.

Chapter 5 presents and discusses the results of fiber and composite behavior and relates them to literature findings.

Finally, chapter 6 summarizes the main outcomes and conclusions of this study and presents future recommendations for subsequent studies.

Keywords: Natural fibers, Jute Fabric, Alkali treatment, Epoxy resin, SiC particles, Hybrid composites, Vacuum Assisted Resin infusion (VARI).

Acknowledgment

I would like to express my gratitude to my academic advisors, Prof. Dr. Mohamed Hazem Abdellatif, Associate Prof. Dr. Rawia Hammouda and Associate Prof. Dr. Iman Taha for their guidance and motivation during this study. I am extremely thankful to the Polylab team, especially Eng. Michael Elia for providing their help and support during this work. I also want to appreciate the efforts of Eng. Ahmad El-Mehy, Eng. Bahii Eldeen Bakeer and my Colleagues in design and production engineering department, faculty of engineering, Ain Shams University, Cairo, Egypt. Lastly, I sincerely thank my family, especially my mother for her understanding and patience.

Table of Contents

Chapter 1 Introduction	1
Chapter 2 Literature Review	3
2.1 Composite Materials	3
2.2 Polymeric Matrix Composites	3
2.3 Fiber Reinforced Polymer Composites	6
2.3.1 Woven Fabric Reinforced Polymers	7
2.3.2 Natural Fibers	8
2.4 The use of natural fibers in polymer composites	12
2.4.1 Treatment of Natural Fibers	13
2.5 Particle Reinforced Polymer Composites	15
2.6 Hybrid Composites	16
Chapter 3 Objectives and Work plan	19
Chapter 4 Experimental Work	21
4.1 Material	21
4.2 Characterization of Jute	22
4.2.1 Yarn Characterization	22
4.2.2 Fabric Characterization	23
4.2.3 Chemical Analysis	23
4.3 Alkali Treatment of Jute Fabric	24
4.3.1 Characterization of Alkali Treated Jute Fabric	24
4.4 Preparation of Composites	24
4.4.1 Jute Fabric Reinforced Epoxy Composites	24
4.4.2 Hybrid Jute-SiC-Epoxy Composites	25

4.5 Characterization of Jute Reinforced Epoxy Composites	26
4.6 Characterization of Hybrid Composites	26
4.6.1 Density Distribution in Hybrid Composites	27
4.6.2 Mechanical properties	27
4.6.3 Erosion wear test	28
4.6.4 Microscopic Investigation	29
4.7 Statistical Analysis	29
Chapter 5 Results and Discussion	31
5.1 Characterization of Virgin Jute	31
5.1.1 Physical Properties of Jute Yarn and Jute Fabric	31
5.1.2 Tensile Properties of Jute Yarn and Fabric	32
5.2 Characterization of Treated Jute	34
5.2.1 Chemical Analysis of Jute	34
5.2.2 Tensile Properties of Treated Jute	35
5.3 Characterization of Jute Reinforced Epoxy Composites	39
5.4 Characterization of Hybrid Composites	41
5.4.1 Effect of Infusion Distance on Composite Homogeneity	41
5.4.2 Mechanical Properties	44
5.4.3 Erosion Wear Behavior	50
5.4.4 Microscopic Investigation	51
5.5 Statistical Analysis	58
5.6 Manufacturing of Small Scale Wind Turbine Blade	61
Chapter 6 Conclusions and Future Work	64
6.1 Conclusions	64
6.2 Future Work	65
Deferences	66

A	_ /
Annon	16
$A \cap A \cap A$	/ [
7 X1111C/X	 , \

List of abbreviations

Al₂O₃ Aluminum oxide

ANOVA Analysis of variance

DF Degree of freedom

DP Degree of polymerization

EFB Empty fruit bunches

EP Epoxy

FRPC Fiber reinforced polymer composites

JE Jute epoxy

JF Jute fabric

MSB Mean square between

MSE Mean square error

NF Natural fibers

-OH Hydroxyl group

PFPC Particle filled polymer composites

PMCs Polymeric matrix composites

SEM Scanning electron microscope

SiC Silicon carbide

UV Ultraviolet

VARI Vacuum assisted resin infusion

List of symbols

d	Fiber diameter	[µ m]
K	Yarn count constant	[m/g]
L	Yarn length	[m]
1/d	Aspect ratio	
$l_{\rm c}$	Critical length	[µm]
m	mass	[g]
S1, S2, S3	Secondary wall	
σ	Ultimate tensile strength	[MPa]
$ au_{ m c}$	Fiber –matrix bond strength	[MPa]

List of Figures

Figure 2.1 Epoxy group [39]4
Figure 2.2 Chemical structure of epoxy resin [34, 39]5
Figure 2.3 Curing reaction between epoxy resin and hardener [34, 39]5
Figure 2.4 Example of continuous and discontinuous fibers [30]6
Figure 2.5 Warp and weft directions of a woven fabric
Figure 2.6 Classification of natural and synthetic fibers [45]9
Figure 2.7 Structure of natural fibers [48]
Figure 2.8 (a) Jute plant (b) Jute fiber
Figure 2.9 SEM micrograph of a cross section of jute fiber [55]
Figure 2.10 Lattice structures of cellulose I and cellulose II [57]14
Figure 3.1 objective and work strategy
Figure 4.1 Schematic of composite preparation using VARI
Figure 4.2 Density kit setup, (b) Sample position versus infusion distance 27
Figure 4.3 Schematic sketch of erosion test rig [64]
Figure 5.1 Optical photomicrograph of jute yarn in (a) longitudinal direction (b) cross section
Figure 5.2 A typical stress-strain curve for JF-250 yarn and fabric
Figure 5.3 Effect of alkali treatment (time and concentration) on tensile strength of jute yarn
Figure 5.4 Effect of cellulose concentration on tensile strength of jute yarn 36
Figure 5.5 Effect of alkali treatment (time and concentration) on tensile modulus of jute yarn
Figure 5.6 Effect of alkali treatment (time and concentration) on tensile strength of jute fabric (JF-250)

Figure 5.7 Effect of alkali treatment (time and concentration) on tensile modu of jute fabric (JF-250)	
Figure 5.8 Effect of alkali treatment (time and concentration) on tensile strenged jute fabric reinforced composites	_
Figure 5.9 Effect of alkali treatment (time and concentration) on tensile modu of jute fabric reinforced composites	
Figure 5.10 Particle distribution along infusion JF-250/F800, arrow indicates infusion direction.	
Figure 5.11 Density of JF-250/SiC F800 composite versus infusion distance.	42
Figure 5.12 Mean density JF250/F800 epoxy composites versus SiC content	43
Figure 5.13 Density of 4 vol. % SiC hybrid composite versus infusion distance	
Figure 5.14 Variation of tensile strength versus SiC content	45
Figure 5.15 Variation of tensile modulus with SiC content	46
Figure 5.16 Variation of flexural strength versus SiC content	47
Figure 5.17 Variation of flexural modulus with SiC content	47
Figure 5.18 Variation of impact strength versus SiC content	48
Figure 5.19 Schematic representation of crack front pinning [75]	49
Figure 5.20 Schematic showing crack growth pattern: (a) weakly bonded particles and (b) strongly bonded particles [76]	
Figure 5.21 Erosion weight loss versus time	50
Figure 5.22 Average erosion value versus SiC content	51
Figure 5.23 SEM micrograph of impact fracture surface of JF-250/EP at different magnifications of (a) $150\times$, (b) $500\times$, (c) $4000\times$ and (d) $4000\times$	52
Figure 5.24 SEM micrograph of impact fracture surface of JF-250/4SiC at different magnifications of (a) 250×, (b) 500× and (c) 2000×	54
Figure 5.25 SEM micrograph of impact fracture surface of JF-250/8SiC at different magnifications of (a) 250×, (b) 500×, (c) 1000×, (d) 2000× and (e) 4000×	55

Figure 5.26 SEM micrograph of tensile fracture surface for (a) JF-250/4SiC a	at
$1000x$, (b) JF-250/6SiC at $1000\times$ and flexural fracture surface for JF-250/4Si	\mathbf{C}
at different magnifications of (c) 150×, (d) 1000×	56
Figure 5.27 Drawing of the small scale wind turbine blade	61
Figure 5.28 VARI setup of one half of the wind turbine blade	62
Figure 5.29 VARI process applied for both halves of the wind turbine blade.	63
Figure 5.30 Fabricated halves of the wind turbine blade	63