Evaluation of Insulin Resistance in Hepatitis C Infected Thalassemia Children and Survivors of Childhood Malignancy

Thesis

Submitted For Partial Fulfillment of Master Degree in **Pediatrics**

BY

Amira Elsayed Abd Elaziz Abd Elgawad M.B.B., Ch (2007)

Under Supervision of

Prof. Dr. Manal Hamdy El-Sayed

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Dalia Nabil Toaima

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Noha Refaat Mohamed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

بِشِهُ اللَّهُ اللَّاللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ ال

وقل اعْمَلُوا فَسنيرَى اللَّهُ عَمَلَكُمْ وَقُلِ اعْمَلُوا فَسنيرَى اللَّهُ عَمَلَكُمْ ورَسُولُهُ والمُؤْمِنُونَ

صدق الله العظيم سورة التوبة آية (١٠٥)

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I wish to express my deepest sincere gratitude to **Prof Dr. Manal Hamdy EL-Sayed**, Professor of pediatrics, faculty of medicine, Ain shams university, for her kind supervision, great support and encouragement, also for the generous and numerous facilities she had offered all through this work. It has been a great honor to work under her supervision.

I am all appreciative for the kind help offered to me by **Dr**. **Dalia Nabil Toaima**, Lecturer of Pediatrics, faculty of medicine, Ain shams university,. Her scientific guidance, interest, valuable criticism and comments were helpful throughout the course of this work.

My deepest thanks to **Dr. Noha Refaat Mohamed**, Lecturer of Clinical and chemical Pathology, faculty of medicine, Ain shams university, for her valuable guidance, serious and decisive comments, continuous support and her meticulous supervision.

My deepest thanks to **Dr. Amira Mohsen Abd-Elhamed**, researcher at the community medicine department at national research center for her valuable guidance and helping us doing statistical analysis of this study

I want to express my deepest gratitude and my great thanks to my dear father who died before I complete this work and I wish if he was present now with me

Finally I would like to thank all the patients and all the volunteers included in this work for their share to complete this work.

Amira Elsayed Abd Elaziz Abd Elgawad

List of Contents

	Page
List of Abbreviations	i
List of Figures	iii
List of Tables	vi
Introduction	1-3
Aim of the work	4
Review of literature	5-49
Hepatitis C:	5-32
Introduction of Hepatitis C Virus	5
 Virology 	5
 Replication 	10
Global Hepatitis C Prevalence	11
 Mode of HCV Transmission 	12
 Nature of HCV Infection 	18
 Extrahepatic complications 	19
 Clinical features of HCV infection 	20
Pathology of Chronic Hepatitis C	23
Pathogenesis	25
Extrahepatic Manifestations	26
 Diagnosis of HCV infection 	28
Insulin Resistance	33-49
 Pathogenesis 	33
• Causes	37
Sequale of Insulin Resistance	39
Diagnosis of Insulin Resistance	41
Treatment of insulin resistance	41
Insulin Resistance and HCV	43
Patients and methods	50-59
Results	60-118
Discussion	119-129
Summary	130
Recommendations	132
References	133
Arabic Summary	

List of Abbreviations

ALP	Alkaline phosphatase
ALT	Alanine transaminase
AST	
BMI	Aspartate transaminase
	Body mass index
β-TM	B thalassemia major
CHC	Chronic hepatitis C
CIGMA	Continuous infusion of glucose with model assessment
CKD	Chronic kidney disease
CTLs	Cytotoxic T lymphocytes
DM	Diabetes mellitus
EIA-2	Enzyme immunoassay
FFAs	Free fatty acids
GBD	Global burden of disease regions
region	
GLP-1	Glucagon-like peptide-1
HBs Ag	Hepatitis B surface antigen
HBV-	Hepatitis B virus deoxynucliec acid
DNA	
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HCV-Ab	Hepatitis c virus antibody
HCW	Healthcare worker
HD	Hemodialysis
HDL	High density lipoprotein
Hg	Haemoglobin
HIV	Human immunodeficiency virus
HOMA	Homeostasis model assessment
HOMA	Homeostasis model assessment insulin
IR	resistance
IDU	Injection Drug Use
IGF	Insulin like growth factor

List of Abbreviations (Cont.)

INF α	Interferon α
IR	Insulin Resistance
IRS	Insulin receptor substrate 1
ISDR	Interferon sensitivity determining region
ITT	Insulin tolerance test
IVGTT	Intravenous glucose tolerance test
LDIGIT	Low-dose insulin and glucose infusion test
LDL	Low density lipoprotein
MC	Mixed cryoglobulinemia
MHC	Major histocomptability complex
NCEP	National Cholesterol Education Program
NGT	Normal glucose tolerance
OGTT	Oral glucose tolerance test
PCR	Polymerase chain reaction
PCT	Porphyria cutanea tarda
PT	Prothrombin time
QUICKI	Quantitative insulin sensitivity check index
RA	Rheumatoid arthritis
RIBA	Recombinant immunoblot assay
RNA	Ribonucleic acid
SR-BI	Human scavenger receptor class B1
SS	Sjogren's syndrome
TIBC	Total iron binding capacity
TLC	Total leucocytic count
TMA	Transcription Mediated Amplification
TS	Transferrin saturation
WBC	White blood cell
WHO	World Health Organization

List of Figures

Fig.	Title	Page	
	Review of Literature	8	
1	Cut way model of human hepatitis c virus.	6	
2	The HCV genome and expressed polyprotein.	8	
3	A simplified diagram of the HCV replication cycle.	10	
4	Map of estimated anti-HCV seroprevalence by GBD region.	14	
5	Natural history of HCV infection.	19	
6	Typical serologic course of chronic hepatitis C.	30	
7	Pathophysiology of insulin resistance and its metabolic sequale.	40	
8	Interference of Hepatitis C virus in the insulin signaling pathway.	45	
9	Pathogenic mechanisms and therapeutic strategies for hepatitis C virus (HCV)-associated insulin resistance.	47	
10	Consequences of insulin resistance in chronic hepatitis C.	49	
	Results		
11	Sex distribution among survivors of childhood malignancy patients and controls.	66	
12	F.glucose distribution among cancer survivors patients and controls.	68	
13	Fasting insulin distribution among survivors of childhood malignancy patients and controls.	69	
14	HOMA distribution among survivors of childhood malignancy patients and controls.	70	
15	HOMA-IR distribution among survivors of childhood malignancy patients and controls.	71	

Fig.	Title	Page
16	Age distribution among thalassemic patients and controls.	73
17	BMI distribution among thalassemic patients and controls.	74
18	F.insulin distribution among thalassemic patients and controls.	76
19	HOMA distribution among thalassemic patients and controls.	77
20	Distribution of F.glucose among thalassemic patients and controls.	
21	Distribution of HOMA-IR among male and female survivors of childhood malignancy.	85
22	Positive correlation between fasting insulin among all patients and body weight in kilograms.	89
23	Positive correlation between fasting insulin among all patients and HOMA test.	89
24	Positive correlation between fasting insulin and body weight in kilograms among survivors of childhood malignancy patients.	91
25	Positive correlation between fasting insulin and HOMA among thalassemic patients.	93
26	Positive correlation between s.ferritin and platelets among all patients.	95
27	Positive correlation between s.ferritin and total bilirubin among all patients.	96
28	Positive correlation between s.ferritin and ALT among all patients.	97
29	Positive correlation between s.ferritin and ALP among all patients.	98
30	Negative correlation between s.ferritin and Hg among all patients.	99

Fig.	Title	Page
31	Positive correlation between s.ferritin and	101
	ALT among survivors of childhood	
	malignancy patients.	
32	Positive correlation between s.ferritin and	101
	ALP among survivors of childhood	
22	malignancy patients.	1.02
33	Positive correlation between s.ferritin and	103
34	ALP among thalassemic patients. Positive correlation between s.ferritin and	103
34	ALT among thalassemic patients.	103
35	Positive correlation between s.ferritin and	104
	total bilirubin among thalassemic patients.	104
36	Positive correlation between HCV PCR and	106
	S.albumin among all patients.	100
37	Positive correlation between HCV PCR and	
	total bilirubin among thalassemic patients.	
38	Negative correlation between HCV PCR and	109
	PT among thalassemic patients.	
39	Positive correlation between HOMA and	111
	weight among all patients.	
40	Positive correlation between HOMA and	112
4.1	fasting glucose among all patients.	112
41	Positive correlation between HOMA and	113
42	fasting insulin among all patients.	115
42	Positive correlation between HOMA and	
	fasting insulin among survivor of childhood malignancy patients.	
43	Positive correlation between HOMA and	117
73	fasting glucose among thalassemic patients.	11/
44	Positive correlation between HOMA and	118
	fasting insulin among thalassemic patients.	

List of Tables

	m.,	ъ
Table	Title	Page
Review of Literature		
1	HCV proteins and their functions in the viral	9
	life cycle.	
	Results	
2	Demographic data and clinical characteristics of	60
	all patients.	
3	Laboratory findings of all patients.	62
4	Demographic data of all patients versus	63
	controls (anthropometric and clinical	
	examination).	6.4
5	Laboratory parameters of all patients versus	64
	controls.	65
6	Demographic data of survivors of childhood	65
7	malignancy patients versus control.	(7
7	Laboratory parameters of survivors of	67
8	childhood malignancy patients versus controls.	72
0	Demographic data of thalassemic patients versus controls.	12
9	Laboratory parameters of thalassemic patients	75
	versus controls.	75
10	Demographic data of thalassemic patients	79
10	versus survivors of childhood malignancy	12
	patients.	
11	Laboratory parameters of thalassemic patients	80
	versus survivors of childhood malignancy	
	patients.	
12	Demographic data of female patients versus	81
	male patients.	
13	Laboratory parameters of female patients versus	82
	male patients.	
14	Demographic data of female and male survivors	83
	of childhood malignancy.	

Table	Title	Page
15	Laboratory parameters of female and male survivors of childhood malignancy.	84
16	Demographic data of females versus males of of thalassemic patients.	86
17	Laboratory parameters of female and male thalassemic.	87
18	Correlation between different variables and Fasting insulin among all patients.	88
19	Correlation between different variables and Fasting insulin among survivors of childhood malignancy patients.	90
20	Correlation between different variables and Fasting insulin among thalassemic patients.	92
21	Correlation between different variables and serum ferritin among all patients.	94
22	Correlation between different variables and serum ferritin of survivors of childhood malignancy patients.	100
23	Correlation between different variables and serum ferritin among thalassemic patients.	102
24	Correlation between different variables and HCV level by PCR among all patients.	105
25	Correlation between different variables and HCV level by PCR among survivors of childhood malignancy patients.	107
26	Correlation between different variables and HCV level by PCR among thalassemic patients	108
	Correlations between different variables and HOMA among all patients.	
28	Correlations between different variables and HOMA among survivors of childhood malignancy patients.	114

Table	Title	Page
	Correlations between different variables and	116
	HOMA among thalassemic patients.	
	Correlation between frequency of blood	
	transfusion and HCV PCR level (Pearson	
	correlation) in thalassemic patients.	

Introduction

Acute HCV infection is rarely recognized in children outside of special circumstances such as a known exposure from an HCV-infected mother or after blood transfusion (Maureen, 2002). The risk of acquiring HCV infection as a result of transfusion was about 10% (Minola et al., 2002).

Repeated blood transfusion in thalassemia patients is necessary for their survival; however, such transfusions increase their exposure not only to HCV but also to other blood-borne viruses (Al-Sheyyab et al., 2001). HCV infection is the leading cause of post-transfusion hepatitis worldwide (Al Hawsawi, 2000). Pediatric cancer patients frequently require blood and blood products during therapy; thus, those who were treated before the current HCV blood donor screening methods were initiated in 1992 have an elevated risk of transfusion-acquired HCV. As in the general population, chronic HCV infection in pediatric cancer survivors is associated with liver fibrosis, cirrhosis, hepatocellular carcinoma, extrahepatic manifestations, and impaired quality of life (Davis et al., 2003).

There appears to be worldwide geographic variation in the prevalence of HCV infection in children. Studies in the early 1990s (which reflected populations of children who could have been exposed to contaminated blood products) reported prevalence rates ranging from 0 %in Japan and Taiwan (Tanaka et al., 1992 and Lee et al., 1991) 4%in Italy (Gessoni and Manoni, 1993). In the United States, antibodies to HCV are present in approximately 0.2 %of children aged 6 to 12 and in 0.4 %of those aged 12 to 19 (Alter et al., 1999; Jhaveri et al., 2011 and Armstrong et al., 2006).

Prevalence rates in Egypt were low in the 1990s among children without a history of exposure to blood

Dontroduction and Aim of The Work

products (Khalifa et al., 1993) but a more recent series reported HCV rates of 2% (El Raziky et al., 2007).

In an Egyptian study conducted among rural school children reported an average prevalence of about 7% (Abd El_wahab et al., 1994) while the average prevalence in children attending outpatient clinics was found to be approximately 4% (Khalifa et al., 1993).

High HCV prevalence rates were observed with averages of about 42% among multi-transfused children and about 58% among children with thalassemia (Mansour et al., 2012). HCV prevalence among children with leukemia was 19.0% (Meri et al., 2001). HCV prevalence among patients with pediatric malignancies who had just ended chemotherapy was 39.6% (Mostafa et al., 2003).

It is well documented that HCV infection in children is clinically asymptomatic (Milner et al., 2010). Histological findings are usually mild and the risk of severe complications is low. Nevertheless, despite the favorable prognosis during the first and second decades of life, approximately 4% to 6% of children have evidence of advanced liver fibrosis or cirrhosis (Guido et al., 2003; Goodman et al., 2008).

Since the identification of hepatitis C virus (HCV) in the late 1980s, chronic HCV infection has emerged as a complex multifaceted disease with manifestations extending beyond the liver. As such, hepatic steatosis, insulin resistance (IR), and type II diabetes have been observed to occur more frequently in association with HCV infection than other chronic inflammatory liver disease (Goodman et al., 2008). Several studies evaluating IR in patients with chronic HCV infection have found that the development of IR can occur early in the course of the disease (Fartoux et al., 2005).

Dontroduction and Aim of The Work

This effect appears to be independent of body weight, stage of liver disease, and presence or absence of overt diabetes (Shintani et al., 2004; Petit et al., 2001). Hepatitis C makes people three to four times more likely to develop type 2 diabetes and insulin resistance (Milner et al., 2010).

This study will assess the association between insulin resistance and hepatitis C in children with thalassemia and the survivors of childhood malignancy.