

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-١٠٠ منوية ورطوية نسبية من ٢٥-١٥ لا حالة المنافلات المنا

بعض الوثائــــق الاصليــة تالفــة

بالرسالة صفحات لم ترد بالاصل

Ain Shams University
Faculty of Engineering
Computer and Systems Engineering Department

Fractal Image Compression

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Electrical Engineering (Computer and Systems)

Submitted By

Sabry Mohamed ABD El-Moetty

B.Sc., Electrical Engineering (Computer and Systems Engineering) Military Technical Collage 1986

Supervised by

Prof. Dr. Abdel-Moniem A. Wahdan
Professor of Control and Systems Engineering
Dr. Hazem Mahmoued Abbas
Doctor of Control and Systems Engineering

Computer and Systems Eng. Dept., Faculty of Engineering Ain Shams University

Cairo, Egypt -1998

ات ک

Examiners Committee

Name:

Sabry Mohamed Abd El-Moetty

Thesis:

Fractal Image Compression

Degree:

Master of Science in Electrical Engineering

(Computer and Systems Engineering)

Name, Title and Affiliation

Signature

1-Prof. Dr. Mohamed Zaki Abd- Elmageed M. Zak.

EL-Azhar University,

Faculty of Engineering,

Computer and Systems Engineering Dept.

2-Prof. Dr. Osman Badr
Ain shams University

Ain shams University,

Faculty of Engineering,

Computer and Systems Engineering Dept.

3-Prof. Dr. A. A. Wahdan......

Ain shams University,

Faculty of Engineering,

Computer and Systems Engineering Dept.(Supervisor)

Date: / /1998

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at the Computer and Systems Engineering Department, Ain Shams University.

No Part of this thesis has been submitted for a degree or qualification at other university or institution.

Date

/ /1998

Signature

Name

: Sabry Mohamed ABD El-Moetty

AIN SHAMAS UNVIRISITY

Faculty of Engineering Computer and Systems Engineering Department

Fractal Image Compression

Submitted By

Eng. Sabry Mohamed ABD El-Moetty

Abstract: Due to the huge mass information storage and retrieval

Grows of images, the processing and transmission time has been costly enough and the need to an image compression technique has become an important issue in relation to transmission and storage of information. Digitized images are often have the property of being both data extensive and relatively redundant objects. Now, the problem is to find a suitable technique to compromise between image compression ratio, high image quality and the time needed to encode/decode the original image. Currently the most popular approach to image compression is to make a frequency transformation of the image and then throw away the high-end coefficients and only use the low-end coefficients to describe the original image. Image compression based on fractal theory is a new and radical different method. It has shown promising results even though it is still in the early development phase. The method originates from Bransley and his work with Iterated Function System (IFS). Jacquien proposed an automatic fractal image encoder and since his first publication [15] on

fractal based compression this specialized area has been steadily growing. The basic principal of fractal image compression is that the image can be reconstructed using the self-similarities present in the image. A major problem regarding this new technique is the high encoding time due to the complexity of the basic algorithm. This complexity makes fractal encoding nearly useless compared to other techniques (i.e. frequency transformation). Various attempts have been made to prune the encoding time by reducing the complexity of the encoder. Attempts have also been made to utilize the fractal compression technique in other areas such as sound data, color images, and image sequences. In This thesis:

- An Image Processing Overview
- Survey of Image Data Compression Methods
- Full detail of Fractal Image Compression Approaches
- Proposed solution to break time complexity of the exhaustive search
- A comparative study attempt between
 - Wavelet Transform
 - Vector Quantization
 - JPEG
 - Heavy Brute Search
 - A Proposed Solution

Keywords: Fractal, Affine Transformation, Contractive, R-tree, Image Compression.

Acknowledgments

First, I would like to express my gratefulness to Allah for making this work possible. I would like to thank my professors for their encouragements, support and help. Any attempt to articulate my gratefulness to them will be far from complete. I wish to express my thanks to my professor, Dr. ABD Elmonem ABD El zaher Wahdan for his enlightenment, support supervision and for the provision of valuable suggestion. I would also like to thank Dr. Hazem Abaas, assistance professor, for his advice, patience, and constructive criticism. Finally, I would like to thank everybody who plays a role to complete this master.

•. · :

Table Of Content

Chapter 1: Introduction	1
1.1 The Need for Image Compression	1
1.2 Compression Terminology	2
1.3 Compression Categories	3
1.4 Fractals	4
1.5 Thesis Contribution	4
Chapter 2 : Digital Image Processing	5
2.1 Introduction To digital Processing.	5
2.2 Digital Image Representation	6
2.3 Elements Of Digital Image Processing System	7
2.3.1 Image Processor	7
2.3.2 Digitizer	8
2.3.3 Digital Computer	8
2.3.4 Storage Devices	9
2.3.5 Display and Recording Devices	9
2.4 Digital Image Fundamental	10
2.4.1 Elements Of Visual Perception	10
2.4.2 An Image Model	11
2.4.3 Sampling And Quantization	12
2.4.4 Some Basic Relationships Between Pixels	13
2.4.5 Imaging Geometry	14
2.5 Image Transform	16
2.5.1 Fourier Transform	16
2.5.2 Discrete Fourier Transform	16
2.5.3 Fast Fourier Transform	17
2.5.4 Discrete Cosine Transform	18
2.6 Image Enhancement	19
2.6.1 Image Enhancement By Histogram Modification	
Techniques	20
2.6.2 Image Smoothing	19
2.6.3 Image Sharpening.	22

2.7 Image Restoration	26
2.7.1 Degrading Model.	27
2.8 Image Encoding.	
2.8.1 Fidelity Criteria.	28
2.8.2 The Encoding Process.	29
2.9 Image Segmentation.	30
2.10 Image Representation and Description.	31
	32
Chapter 3: Image data compression	33
3.1 Introduction To Image Data Compression	. 33
3.2 Image Data Properties	35
3.3 Discreet Image Transform Of An Image Transform	36
3.4 Predictive Compression Methods	37
3.5 Vector Quantization	39
3.5.1 Basic Definitions	40
3.5.2 Structure Properties and Characteristics.	42
3.5.3 Statistical Advantages Of Vector Quantization	43
3.5.4 Measuring The Vector Quantization Performance	44
3.5.5 Nearest Neighbor Quantizer.	44
3.5.6 Vector Quantization Design	45
3.5.7 The Generalized Lloyd Algorithm	46
3.6 Wavelet Theory	48
3.6.1 Introduction To Wavelet Theory	48
3.6.2 Wavelet And Fourier Transform	49
3.6.3 Image Compression Using Wavelet theory	- 52
3.7 JPEG (Joint Photographic Expert Group)	53
3.8 Pyramid Compression Methods	. 57
3.9 Comparison Of Compression Methods	59
3.10 Other Techniques	60
3.11 A taxonomy Of Image Compression Methods	61
Chapter 4: Fractal Image Compression	67
4.1 Introduction	67
4.2 A Brief History Of Fractal Image Compression	68
4.3 What Is Fractal Image Compression	69
4.4 Why Is It <i>Fractal</i> Image Compression	73
4.5 Why IS It Fractal Image Compression	75 75
4.6 Iterated Function System	75

4.7 Self Similarities In Images	77
4.7.1 Image As A group Of Functions	77
4.7.2 A Metric On Images	78
4.7.3 Natural Images Are Not Exactly Self-Similar	79
4.8 A Special Copy Machine	80
4.8.1 A Special Copy Machine	80
4.8.2 Partitioned Copying Machine Are PIFS	81
4.8.3 Fixed Point For Copying Machine	82
4.9 Encoding Images	83
4.9.1 A Simple Illustrative Example	84
4.9.2 Ways To Partition Images	87
4.9.2.1 Quadtree partitioning	87
4.9.2.2 HV - Partitioning	89
4.9.2.3 Triangular partitioning	90
4.10 Implementation notes	91
4.11 Conclusions	96
•	
Chapter 5 : Novel Fractal Image Compression	98
Algorithm	
Angorithm	
5.1 Optimizing Encoding Time, Compression Ratio	
And Fidelity	98
5.2 Heavy Bruit Algorithm	98
5.3 Outline of the proposed solution Algorithm	102
5.4 Conclusion	112
or conduction	112
Chamtan 6 . Commonstine Steel	113
Chapter 6 : Comparative Study	113
6 1 Introduction	110
6.1 Introduction	113
6.2 Comparative Study	113
6.2.1 Introduction	113
6.2.2 Experimental Results For Vector Quantization	116
6.2.3 Experimental Results For Wavelet Theory	118
6.2.4 Experimental Results For JPEG	120
6.2.5 Experimental Results For Fractal Image Compression	121
6.2.6 Quality Characteristic Of FIC	130