TECHNOLOGICAL STUDIES ON PROCESSING OF SOME NON-TRADITIONAL FRUITS

By

AZIZA THARWAT GAMAL MOSTAFA

B.Sc. Agric. Sc. (Food Sciences), Fac. Agric., Cairo Univ., Egypt, 1996.M.Sc. Agric. Sc. (Food Sc. and Tech), Cairo University, 2010.

A thesis submitted in partial fulfillment
Of
the requirements for the degree of

in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

TECHNOLOGICAL STUDIES ON PROCESSING OF SOME NON-TRADITIONAL FRUITS

By

AZIZA THARWAT GAMAL MOSTAFA

B.Sc. Agric. Sc. (Food Sciences), Fac. Agric., Cairo Univ., Egypt, 1996M.Sc. Agric. Sc. (Food Sc. and Tech), Cairo University, 2010

This thesis for Ph.D. degree has been approved by:
Dr. Hesham Amin Ali Eissa
Researcher Prof. of Food Industry, National Research Center
Dr. Yehia Abd-El-Razik Heikal
Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University.
Dr. Hany Idrees Khalil
Prof. of Food Science and Technology, Faculty of Agriculture, Ain
Shams University.
Date of Examination: / /2017

TECHNOLOGICAL STUDIES ON PROCESSING OF SOME NON-TRADITIONAL FRUITS

By

AZIZA THARWAT GAMAL MOSTAFA

B.Sc. Agric. Sc. (Food Sciences), Fac. Agric., Cairo Univ., Egypt, 1996.M.Sc. Agric. Sc. (Food Sc. and Tech), Cairo University, 2010.

Under the supervision of:

Dr. Hany Idrees Khalil

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ihab Salah Abd El-Hamid Ashoush

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Ginat Mahmoud EL-Shrief

Researcher of Food Technology, Food Technology Institute, Agriculture research Center

ABSTRACT

Aziza Th. Gamal. Technological studies on processing of some Non-Traditional fruits. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2017

The present study was carried out to throw some light on the best ways to process some non-traditional fruits, to demonstrate their functional properties and changes induced in manufactured products and their induced application in some of the food product to improve their nutritional and their functional properties. Therefore, acerola, anonna, and cactus pear fruits were evaluated for their phenolic and flavonoid contents as well as antioxidant activities in terms of scavenging DPPH free radicals. Acerola juice showed a high content of vitamin C, and total pheolic content comparing with its freeze-dried powder in fresh acerola juice and its freeze-dried powder.

On the other hand, freeze-dried powder of acerola contained, oxalic, mallic, lactic, acetic and propionic.

Annona juice and its freeze-dried powder, had ascorbic acid content measured by HPLC recorded 6.93 and 27.85 mg/100gm respectively, the free radical scavenging activity clearly increased in freeze-dried annona powder compared to fresh juice. Total phenolic contents in fresh annona juice and its freeze-dried powder were (9.95 and 32.6 mg/100g) as gallic acid, respectively. Annona fresh juice contained seven organic acids compound and its freeze dried powder had five organic compounds. Red cactus juice and its freeze-dried powder had a high content from betacyanins, betaxanthis and total betalins comparing with yellow cactus juice and its freeze-dried powder and had a higher content of antioxidant activity 92% compared with yellow cactus juice 71.93%.

The rheological characteristics of fresh and reconstituted juices were measured for acerola, annona and cactus fruits at 25°C. The relationship between the applied shear rates and the corresponding shear

stress response was not linear indicating the non-Newtonian behavior of the juices obtained from these fruits. According to power law equation, the n-value (flow behavior index) of tested juices was in the range of 0.222 to 0.520 indicating the pseudoplastic behavior of the tested fruit juices. The highest values of consistency coefficient (K-value) were recorded for acerola juice (14.7 Dynes.sⁿ /cm²), while the lowest values were recorded for the enzymatic treatment of red cactus juice (4.766 Dynes.sⁿ /cm²). The rheological parameters of the reconstituted freeze dried juices showed that the n-values were in the range of 0.562 to 0.695, being higher than their corresponding n-values of the fresh juices. The highest values of consistency coefficient (K-value) of the reconstituted juices were recorded for yellow cactus while the lowest values were recorded for annona

The highest amount of absorbed moisture (0.3907g H_2O/g DM) was recorded for powders of yellow cactus juice due to its higher sugar content compared with the other tested powders. Sorption isotherms curves were analyzed according to the different sorption isotherms equation applied like: BET, Halsey, Smith, Oswin, Henderson and GAB-models.

On the other hand, the results showed that supplementation of strawberry jams with freeze dried tropical fruits powder during processing, enriched these products in bioactive compounds. Also, supplementation of jams with freeze dried powder of the treated fruits had a good effect on color and antioxidant activity. The strawberry jam made with freeze dried tropical fruits powder had a higher polyphenolic content and antioxidant activity. Therefore, this jam can be used as a good source of antioxidants in our diet and may have relevance in the prevention of diseases in which free radicals are implicated.

Keywords: Acerola, Cactus pear, Annona, Freeze drying, Rheology, Apparent viscosity, Antioxidant activity.

ACKNOWLEDGMENT

First and before all, full praise and gratitude is to **ALLAH**, who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties.

My sincere appreciation and deepest gratitude to. **Dr. Hany Idrees Khalil,** Professor of Food Science, Faculty of Agriculture, Ain Shams University, for his direct supervision, with him i learned a lot, at both professional and personal level. His wide knowledge and his logical way of thinking have been of great value for me. His understanding and encouraging have provided a good basis for the present work. I have no great words to express how much I am grateful to him! Thank you so much.

Deepest thanks and sincere appreciation to **Dr. Ihab Salah Abd El-Hamid Ashoush**, Prof. of Food Science and Technology, Dep. of Food Science, Faculty of Agriculture, Ain Shams University, for his supervision, precious advice given throughout the whole study. He was an important support for me throughout this work.

I also thank **Dr. Ginat mahmamoud El-Shreif**, Researcher of Food Technology Institute, Agriculture research Center for her provided help and encouragement during the study.

Finally, many thanks are extended to all members of Food Science and Technology Department, Faculty of Agriculture, Ain Shams University as well as Food Science and Food Technology Research Institute members.

CONTENTS

LIST OF TABLES.
LIST OF FIGURES
LIST OF ABBREVIATIONS
1. INTRODUCTION
2. REVIEW OF LITERATURE
2.1. Acerola Fruit (Malpighia glabra L.)
2.1.1. Phytochemical and Nutrient compostion of acerola fruit
2.1.2. Antioxidant capacities of acerola juice
2.1.3. Freeze-drying process of acerola juice
2.1.4. Rehyological properties of acerola juice
2.2. Annona fruit (Annona Squamosa L.)
2.2.1. Phytochemical and Nutrient composition of Annona fruits
2.2.2. Antioxidant capacities of Annona fruits
2.2.3. Freeze-drying process of Annona fruits
2.2.4. Rheological properties and sorption isotherms of annona
2.3. Cactus pear (<i>Opuntiaficus-indica</i>) fruits
2.3.1. Phytochemical and nutrient composition of cactus pear
juice
2.3.2. Antioxidant capacities of cactus pear fruits
2. 3.3. Freeze drying process of cactus pear fruits
2.3. 4.Thermal and rehyological properties of cactus pear
2.4. Application of tropical fruits in strawberry jam
3. MATRIALS AND METHODS
3.1. MATERIALS
3.1.1.Fruits
3.1.2. Chemicals
3.2. Methods
3.2.1. Preparation of acerola juice
3.2.2. Preparation of annona juice
3.2.3. Preparation of cactus Juice

	Page
3.2.4. Freeze-drying process for fruit juices	30
3.2.5. Processing of strawberry jam	31
3.3. Methods of analysis	31
3.3.1. Moisture content	31
3.3.2. Total Ash	31
3.3.3. Total soluble solids content (T.S.S.)	31
3.3.4. pH value	32
3.3.5. Total acidity	32
3.3.6. Determination of sugars	32
3.3.7. Determination of organic acids	32
3.3.8. Determination of ascorbic acid	32
3.3.9. Determination of phenolic and flavonoid compounds	33
3.3.10. Determination of flavonoid compounds	34
3.3.11. Determination of total phenolic content	34
3.3.12. Determination of total phenolic content for jam	34
3.3.13. Determination of total flavonoid content for jam	35
3.3.14. Analysis of Betalins pigments	35
3.3.15. Determination of total anthocyanins	36
3.3.16. Measurement of antioxidant activity	36
3.3.17. Color measurement	37
3.3.18. Determination of color index	37
3.3.19. Apparent viscosity of fruit juices and freeze dried powder	37
3.3. 20. Determination of hydration capacity of fruits powders	38
3.3.21. Determination of equilibrium moisture contents for	
freeze dried powders of fruits	38
3.4. Sensory evaluation for jam samples	41
3.5. Statistical analysis procedure	41
4. RESULTS AND DISCUSSION	42
4.1. Some physico-Chemical characteristics fresh acerola juice	
and its freeze-dried powder	42

	Page
4.1.2. Identification of organic acids in fresh acerola juice	
and its freeze-dried powder by HPLC	47
4.1.3.Identification of phenolic compounds in fresh acerola	
juice and its freeze-dried powder by using HPLC	49
4.1.4. Identification of flavonoid compounds for acerola	
juice and its freeze dried powder compounds	52
4.1.5. Effect of using the freeze-drying process on the color	
attributes of the fresh acerola juice	54
4.2. Some physio-chemical characteristics of annona extract	
and it is freeze-dried powder	55
4.2.1. Identification of organic acids content of annona	
extract and its freeze-dried powder by HPLC	58
4.2.2. Identification of phenolics compounds for annona	
extract and freeze dried powder	61
4.2.3. Identification of flavonoid compounds in fresh	
annona juice and its freeze-dried powder	64
4.2.4. Effect of using the freeze-drying process on the color	
attributes of the fresh annona juice	65
4.3.1. Physico-chemical properties of red and yellow cactus	
juice and their powders	66
4.3.2. Identification of organic acids compounds for red and	
yellow cactus juice and their powder	72
4.3.3. Identification of phenolics compound for red and	
yellow cactus and their powder	76
4.3.4. Identification of flavonoids compounds for yellow	
cactus juice and their powder	80
4.3.4. Effect of using the freeze-drying process on the color	
attributes of the fresh red and yellow cactus juice	85
4.4. Flow properties and sorption iso therm of the tested of	
fruits	85

	Page
4.4.1. Rheological characteristics of reconstituted juice from	
freeze- dried powders	89
4.5. Sorption characteristics of juice powders obtained from	
acerola, annona and cactus fruits	93
4.6. Utilization of freeze dried tropical fruits powder in jam	
processor	98
4.6.1. Effect of freeze dried tropical fruits addition the	
antioxidant status of strawberry samples	98
4.6.2. Color parameters of strawberry jam sample	99
4.6.3. Organoletpic evaluations strawberry jam samples	100
5. SUMMARY	102
6. REFERENCES	110
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Saturated salts solutions and their equilibrium relative- humidity	39
2	-	39
2	Some physico and chemical properties of fresh acerola	44
3	and their freeze dried juice	44
3	Identification of organic acids for acerola juice and freeze	46
1	dried powder.	40
4	Identification of phenolic compounds in fresh acerola	40
_	juice and its freeze-dried powder by using HPLC	49
5	Identification of flavonoid compounds for acerola	<i>5</i> 1
6	juice and freeze dried powder by HPLC	51
6	Effect of using the freeze-drying process on the color	<i>5 1</i>
7	attributes of the fresh annona juice	54
7	Some physio-chemical characteristics of annona extract	5.0
0	and its freeze-dried powder.	56
8	Identification of organic acids for Annona extract and its	5 0
0	freeze dried powder by HPLC	58
9	Identification of phenolic compounds in annona extract	<i>c</i> 1
10	and its freeze-dried powder by using HPLC	61
10	Identification of flavonoids compounds for annona	62
11	extract and its freeze dried powder by HPLC	63
11	Effect of using the freeze-drying process on the color	65
12	attributes of the fresh annona juice	65
12	Some physico and chemical properties of red and yellow	60
12	cactus juice and powder.	69
13	Identification of organic acids in red and yellow cactus	72
1.4	juice and its powder by HPLC.	73
14	Identification of phenolics compound for red and yellow	77
	cactus juice and freeze dried powder by HPLC	77

No.		Page
15	Identification of flavonoid compounds in red and	
	yellow cactus juice and its freeze dried powder by HPLC	81
16	Effect of using the freeze-drying process on the color	
	attributes of the fresh red and yellow cactus juice	85
17	Flow parameters of juices obtained from Acerola, Annona	
	and cactus fruits	88
18	Flow parameters of fruit juices obtained from	
	reconstituted acerola, annona, and cactus powders	92
19	Estimated parameters for GAB, Henderson, Halsey,	
	Oswin, Smith and BET for dried juices at 25°C	93
20	antioxidant status of strawberry jam fortified with freeze	
	dried tropical fruits powder	99
21	Color parameters of strawberry jam fortified with freeze	
	dried tropical fruits powder	100
22		100
22	Sensory attributes of strawberry jam fortified with freeze	101
	dried tropical fruits powder	101

VII

LIST OF FIGURES

No.		Page
1	Acerola fruit	6
2	Annona fruit	12
3	Cactus fruits	17
4	Processing steps of freeze dried acerola juice	28
5	Processing steps of freeze dried annona juice	29
6	Processing steps of freeze dried cactus juice	30
7	Determination of ascorbic acid in acerola juice (a) and its	
	freez-dried powder (b)	45
8	Identification of organic acids for acerola juice (a) and its	
	freeze-dried powder (b) by HPLC	47
9	Identification of phenolic compounds in fresh acerola juice	
	(a) and its freeze-dried powder (b) by using HPLC	50
10	Identification of flavonoid compounds in fresh acerola	
	juice and its freeze-dried powder by using HPLC	52
11	Determination of ascorbic acid for anonna extract (a) and	
	its freez-dried powder(b) by HPLC	57
12	Identification of organic acids for Annona extract (a) and	
	its freeze dried powder(b) by HPLC	59
13	Identification of phenolic compounds in annona extract (a)	
	and its freeze-dried powder (b) by using HPLC	62
14	Identification of flavonoids compounds for annona	
	extract (a) and its freeze dried powder (b) by HPLC	64
15	Determination of ascorbic acid in red cactus juice (a) and	
	its freeze-dried powder (b)	70
16	Determination of ascorbic acid in yellow cactus juice (a)	
	and its freeze-dried powder (b)	71
17	HPLC chromatogram organic acids for red cactus juice	
	and powder	74

VIII

No.		Page
18	Determination of ascorbic acid in yellow cactus juice (a)	
	and its freeze-dried powder (b)	75
19	Rheological characteristics of acerola and annona juices	78
20	Rheological characteristics of yellow and red cactus juice	79
21	Rheological characteristics of cactus juices before and	
	after enzyme treatment	82
22	Rheological characteristics of reconstituted acerola juice	
	from freeze dried	83
23	Rheological characteristics of reconstituted annona juice	
	from freeze dried	86
24	Rheological characteristics of reconstituted yellow cactus	
	juice from freeze dried	87
25	Rheological characteristics of reconstituted red cactus	
	juice from freeze dried	88
26	Sorption isotherm of acerola powder	89
27	Sorption isotherm of annona powder	90
28	Sorption isotherm of red cactus powder	90
29	Sorption isotherms of yellow cactus powder	91
30	Sorption isotherm of acerola powder	96
31	Sorption isotherm of annona powder	96
32	Sorption isotherm of red cactus powder	97
33	Sorption isotherms of yellow cactus powder	97

LIST OF ABBREVIATIONS

AA% : Antioxidant activity

Abs : Absorbance

AOAC : Association of Official Analytical Chemists

 β : Beta

°C : Centigrade degree CAE : Catechin Equivalents

DPPH : 2,2-diphenyl-1- picrylhydrazyl

et al : And other

FAO : Food and Agriculture Organization

FEV : Flow Expiratory Volume

Fig : Figure

GAE : Gallic Acid Equivalent H₂O₂ : Hydrogen Peroxide

HPLC : High Performance Liquid Chromatography

L : Litter

μg : Microgrammg : mill gramml : Milliliter

NS : Non Significant O.D : Optical Density

ORAC : Oxygen Radical Absorbance Capacity

PPs : Polyphenols

TPAC : Total Phenolic Acid Contents

TPC : Total Phenolic Contents