EFFECTS OF ω-3 FATTY ACIDS AND ESTROGEN REPLACEMENT THERAPY ON OVARIECTOMY INDUCED OSTEOPOROSIS IN FEMALE ALBINO RATS

Thesis
Submitted by

Ahmed Mohamed Siddiq M.B.B.Ch

In Partial Fulfillment of Master's Degree in Physiology

Under Supervision of

Prof. Dr. Nahed Salah El-din Mohamed

Professor of Physiology Faculty of Medicine - Cairo University

Dr. Mohamed Al-Sayed Saleh

Assistant Professor of Physiology Faculty of Medicine - Cairo University

Dr. Ayman Saied Soliman

Lecturer of Physiology
Faculty of Medicine - Beni-suef University

Faculty of Medicine - Cairo University
2016

ACKNOWLEDGEMENT

First and foremost thanks to *ALLAH*, the most beneficent, the most merciful who taught man what he did not know and what is useful to him.

I wish to express my deep thanks and gratitude to *Prof. Dr. Nahed Salah El-din Mohamed*, Professor of Physiology, Faculty of Medicine, Cairo University for her sincere help, unfailing guidance and support.

I'm deeply indebted to *Ass. Prof. Dr. Mohamed Al-Sayed Saleh*Assistant Professor of Physiology, Faculty of Medicine, Cairo
University for his cordial help and guidance throughout this work.
I wish to express my deep thanks and gratitude to *Dr. Ayman Saied Soliman*, Lecturer of Physiology, Faculty of Medicine, Beni–Suef University for his sincere help, unfailing guidance, support and supervision during the course of this study.

I would like to express my deepest thanks and deep gratitude to *Prof. Dr. Omar Hussien Omar*, Professor of Radiology, Faculty of Medicine, Ain-Shams University for his sincere help and his generous support, which together enabled me to complete this work.

I wish to express my deep thanks to *Ass. Prof. Dr. Laila Ahmed Rashed,* Assistant Professor of Biochemistry, Faculty of Medicine, Cairo University for her cordial help throughout this work. I wish to express my deep thanks to *Mr. Samir Mohammed*

Aboelela, radiology technician, for his sincere help.

I would like to extend my grateful thanks to all professors, colleagues and friends who gave me their great help, cooperation and support. Finally, I am particularly and deeply thankful to my family, who suffered a lot with me during the preparation, course and finishing of this work, without their encouragement, help, understanding and moral support, this work could not have been achieved.

Abstract

Fatty acids especially omega 3 unsaturated fatty acids has known anti-inflammatory effects. And there are different mechanisms by which dietary fatty acids may affect bone, but there protective effect against postmenopausal osteoporosis remains a controversial issue. This study was applied on 50 female albino rats that were divided into 5 equal groups: sham operated group, ovariectomy group, ovariectomy + flaxseed oil group (0.4 g per day), ovariectomy + fish oil administered group (0.4 g per day) and ovariectomy + estrogen replacement therapy group (30 µg/kg 5 days a week). The study proceeded for 12 weeks then femurs bone mineral density (BMD) were measured with dual-energy Xray absorptiometer (DXA) scan and serum osteoprotogerin (OPG), bone specific alkaline phosphatase (ALP-b) and tumour necrosis factor alpha (TNF- α) were measured. There was a significant increase in the BMD of the treated groups compared with the ovariectomy group (p < .01). There were a significant differences in the means of serum bone markers measures of the treated groups versus the ovariectomy group in the form of significant increase in OPG (p < .001) and a significant decrease in ALP-b (p < .001) and TNF- α (p < .001) of the treated groups compared with the ovariectomy group. This study showed a significant negative correlation between BMD and ALP-b (r = -0.375, p < .001). According to this study the chronic administration of omega 3 fatty acids (flaxseed oil - fish oil) has a preventive effect against osteoporosis and suppression of bone turn over process appears to have a role in this preventive effect.

Key Words: Osteoporosis - Omega 3 fatty acids - Bone mineral density - Osteoprotogerin - Tumour necrosis factor alpha - Alkaline phosphatase

List of Contents

Introduction	1
Review of literature	5
Bone physiology	5
Osteoporosis	37
Fatty acids	45
Materials and methods	52
Results	67
Discussion	91
Summary	104
References	106

List of Tables

Number	Subject	Page
Table 1	Major growth factors in bone formation and fracture repair	15
Table 2	Diagnostic criteria for primary osteoporosis	38
Table 3	Causes of secondary osteoporosis	39
Table 4	Bone Mineral Density (gm/cm²) in studied groups	68
Table 5	The effect of 12 weeks administration of flaxseed oil (0.4 g per day), fish oil (0.4 g per day) & estrogen (30 µg/kg 5 days a week) on bone mineral density (BMD) measured by (gm/cm²) in ovariectomized female rats	69
Table 6	Serum osteoprotegerin (pg/ml) in studied groups	74
Table 7	Comparison between the effects of 12 weeks administration of flaxseed oil (0.4 g per day), fish oil (0.4 g per day) & estrogen (30 µg/kg 5 days a week) on serum osteoprotegerin (OPG) measured by (pg/ml) in ovariectomized female rats	75
Table 8	Serum tumor necrosis factor (TNF-α) (pg/ml) in studied groups	78
Table 9	Serum tumour necrosis factor (TNF-α) measured by (pg/ml) in ovariectomized female rats after 12 weeks administration of flaxseed oil (0.4 g per day), fish oil (0.4 g per day) & estrogen (30 μg/kg 5 days a week)	79
Table 10	Serum bone specific alkaline phosphatase (ALP-b) (U/L) in studied groups	82

Table 11	The effect of 12 weeks administration of flaxseed oil (0.4 g per day), fish oil (0.4 g per day) & estrogen (30 µg/kg 5 days a week) on serum bone specific alkaline phosphatase (ALP-b) measured by (U/L) in ovariectomized female rats	83
Table 12	Pearson's correlation coefficient (r) between studied parameters (BMD, OPG, TNF-α and ALP-b) in all cases studied	85

List of Figures

Number	Subject	Page
Figure 1	Parts of a long bone	5
Figure 2	Cambium layer near the periosteal surface	6
Figure 3	Compact and cancellous bone	7
Figure 4	Woven bone seen on hematoxylin and eosin and with polarized light	8
Figure 5	Lamellar bone as seen on H&E-stained slide and with polarization	9
Figure 6	Cross sections of cortex with circumferential, concentric, and interstitial lamellae	10
Figure 7	The osteocyte lacuno-canalicular network	17
Figure 8	Mechanism of osteoclastic bone resorption	24
Figure 9	Bone remodeling	24
Figure 10	Mechanisms of action for OPG, RANKL, and RANK	26
Figure 11	Signaling pathways essential for osteoclastogenesis in pathologic bone disorders	27
Figure 12	Classification of primary osteoporosis	38
Figure 13	Major cytokines in the bone microenvironment that regulate osteoclast function	44

Figure 14	The metabolic pathway of biosynthesis of EPA, docosapentaenoic acid, and DHA	46
Figure 15	Overview of eicosanoid and docosanoid biosynthesis	47
Figure 16	Scheme for the maresin pathway	50
Figure 17	Dilution of standard	60
Figure 18	Lunar Prodigy dual-energy X-ray absorptiometer	63
Figure 19	Comparison of BMD among studied groups control, OVX, OVX-FX, OVX-FS and OVX-E	70
Figure 20	DXA scan on lower end of the femur in one of the control group	70
Figure 21	DXA scan on lower end of the femur in one of the OVX group	71
Figure 22	DXA scan on lower end of the femur in one of the OVX-FX group	71
Figure 23	DXA scan on lower end of the femur in one of the OVX-FS group	72
Figure 24	DXA scan on lower end of the femur in one of the OVX-E group	72
Figure 25	Comparison of OPG serum levels among studied groups control, OVX, OVX-FX, OVX-FS and OVX-E	76
Figure 26	Comparison of TNF-a serum levels among studied groups control, OVX, OVX-FX, OVX-FS and OVX-E	80
Figure 27	Comparison of ALP-b serum levels among studied groups control, OVX, OVX-FX, OVX-FS and OVX-E	84

Figure 28	A scatter plot illustrates the correlation between serum bone specific alkaline phosphatase (ALPbone) (U/L) and serum TNF-α (pg/ml)	85
Figure 29	A scatter plot illustrates the correlation between bone mineral density in the lower end of the femur (BMD) (g/cm²) and serum bone specific alkaline phosphatase (ALPbone) (U/L)	86
Figure 30	A scatter plot illustrates the correlation between serum osteoprotogerin (OPG) (pg/ml) and serum TNF-α (pg/ml)	87
Figure 31	A scatter plot illustrates the correlation between serum osteoprotogerin (OPG) (pg/ml) and serum bone specific alkaline phosphatase (ALPbone) (U/L)	88
Figure 32	A scatter plot illustrates the correlation between bone mineral density in the lower end of the femur (BMD) (g/cm²) and serum osteoprotogerin (OPG) (pg/ml)	89
Figure 33	A scatter plot illustrates the correlation between bone mineral density in the lower end of the femur (BMD) (g/cm^2) and serum TNF- α (pg/ml)	90

List of Abbreviations

3β-HSD	3β-hydroxysteroid dehydrogenase
15-S-HETE	15S-hydroxyeicosatetraenoic acid
17β-HSD	17β-hydroxysteroid dehydrogenase
17-HDHA	17-hydroxydocosahexaenoic acid
18-НЕРЕ	18-hydroxyeicosapentaenoic acid
AA	Arachidonic acid
ALA	Alpha-linolenic acid
ALP-b	Bone specific alkaline phosphatase
ALX	Lipoxins receptor
BCAR1	Breast cancer anti-estrogen resistance protein 1
BMD	Bone mineral density
ВМР	Bone morphogenetic protein
Cbfa1	Core-binding factor alpha 1
COX	Cyclooxygenase
CRP	C-reactive protein

СҮР	Cytochrome P450
DBD	DNA-binding domain
DDH	Death domain homologous
DHA	Docosahexaenoic acid
DHEA	Dehydroepiandrosterone
DNA	Deoxyribonucleic acid
DPA	Docosapentaenoic acid
DXA	Dual-energy X-ray absorptiometry
EDTA	Ethylenediaminetetraacetic acid
EFA	Essential fatty acids
EGF	Epidermal growth factor
ER	Estrogen receptor
ERK	Extracellular-signal-regulated kinase
EPA	Eicosapentaenoic acid
FA	Fatty acid
FasL	Fas ligand

FDA	Food and drug administration
FGF	Fibroblast growth factor
GM-CFU	Granulocytic-macrophage colony-forming unit
н&Е	Hematoxylin and eosin stain
НРЕТЕ	Hydroperoxy-eicosatetraenoic acids
IGF	Insulin-like growth factor
IJO	Idiopathic juvenile osteoporosis
ΙκΒα	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha
IKKs	inhibitor of nuclear factor kappa-B kinase
IL	Interleukin
ITAM	Immunoreceptor tyrosine-based activation motif
JNK	c-jun N-terminal kinase
LA	Linoleic acid
LBD	Ligand- binding domain
LDLs	Low density lipoproteins
LOX	lipoxygenase

LPS	Lipopolysaccharide
LRP	Lipoprotein receptor-related protein
LX	Lipoxin
MAPK	Mitogen-activated protein kinases
M-CFU	Macrophage colony-forming unit
M-CSF	Macrophage colony-stimulating factor
miR-21	MicroRNA 21
MMP-13	Matrix metallopeptidase 13
MSCs	Mesenchymal stem cells
MUFA	Monounsaturated fatty acid
NFATc1	Nuclear factor of activated T cell c1
NF-ĸB	Nuclear Factor kappa B
OI	Osteogenesis imperfecta
OPG	Osteoprotegerin
OSCAR	Osteoclastassociated receptor
OVX	Ovariectomy group

OVX-E	Ovariectomy + Estrogen
OVX-FS	Ovariectomy + Fish oil group
OVX-FX	Ovariectomy + Flaxseed oil group
P450aro	Aromatase enzyme
P450scc	Cholesterol side-chain cleavage enzyme
PDGF	Platelet-derived growth factor
PG	Prostaglandins
PGE2	Prostaglandin E2
PGI	Prostacyclins
PI3K	Phosphatidyl inositol 3 kinase
PLCγ	Phospholipase Cγ
PPARγ	Peroxisome proliferator-activated receptor-γ
РТН	Parathyroid hormone
PTHrP	Parathyroid hormone-related protein
PUFA	Polyunsaturated fatty acid
RANK	Receptor Activator of Nuclear Factor kappa B

RANKL	Receptor activator of nuclear factor kappa B ligand
RBC	Red blood cell
RGD	Arginyl-glycyl-aspartic acid sequence
ROS	Reactive oxygen species
RUNX2	Runt-related transcription factor 2
SFA	Saturated fatty acid
Spry1	Sprouty Homolog 1
TGF-β	Transforming growth factor beta
TNF-α	Tumor necrosis factor alpha
TRAF	TNF receptor-associated factor
TREM	Triggering receptor expressed in myeloid cells
TX	Thromboxanes
VEGF	Vascular endothelial growth factor
Wnt	Wingless-related integration site