Comparison between Drug Eluting Balloons (DEB) and Drug Eluting Stents (DES) in the treatment of de novo coronary lesions

Thesis

Submitted in partial fulfillment of the MD degree in Cardiology

By

Walid Abd elrehim Eldewy

M.B.B., Ch, Msc. Cardiology

Under Supervision of

Professor/ Soliman Gharib Ebrahim

Professor of Cardiology Faculty of Medicine – Cairo University

Professor/ Khaled Abd El-Azeem Shokry

Professor of Cardiology Military Medical Academy

Professor/ Amr Hassan Mostafa

Assistant prof. of Cardiology Faculty of Medicine – Cairo University

Dr. Reda Husain Diab

Lecturer of Cardiology
Faculty of Medicine – Cairo University

Faculty of Medicine Cairo University 2016

Acknowledgements

First, and foremost, my deepest gratitude and thanks should be offered to "ALLAH", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to Professor/ Soliman Gharib Ebrahim, Professor of Cardiology, Faculty of Medicine – Cairo University, for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to Professor/ Khaled Abd El-Azeem Shokry, Professor of Cardiology, Military Medical Academy, for his great supervision and unlimited help to provide all facilities to accomplish this work.

I acknowledge with much gratitude to Professor/ Amr Hassan Mostafa, Assistant prof. of Cardiology, Faculty of Medicine – Cairo University, for his efforts, encouragement and support during the whole work.

I acknowledge with much gratitude to Dr. Reda Husain Diab, Lecturer of Cardiology, Faculty of Medicine – Cairo University, for his efforts, encouragement and support during the whole work.

Last but not least, thanks to my Parents and my Family for helping me to finish this work.

Walid Abd elrehim Eldewy

List of Contents

Subject	Page No.
List of AbbreviationsList of Tables	
List of Figures	
Abstract	
Introduction Error! Boo	kmark not defined.
Aim of the Work	5
Review of Literature	
- Drug Eluting Stents	7
- First generation DES	9
- Second generation DES	11
- Third generation DES	
- Drug Eluting Balloons	24
- Myocardial Perfusion Imaging	51
Patients and Methods	83
Results	91
Discussion	121
Summary	127
Conclusion	130
Recommendations	133
Limitations	135
References	137
Arabic Summary	151

List of Abbreviations

Abbrev.	Full term
BMS	: Bare matal stent
BVS	: Bioabsorbable drug eluting vascular scaffolds
CoCr	: Cobalt chromium
CT	: Computed tomography
DAT	: Dual anti-platelet therapy
DCB	: Drug coated ballon
DEB	: Drug eluting ballon
DES	: Drug eluting stent
DP	: Durable polymer
EES	: Everolimus-eluting stents
ISR	: In-stent restenosis
IVUS	: Intravascular ultrasound
LAD	: Left anterior desending artery
LCX	: Left circumflex artery
LLL	: Late lumen loss
MACE	: Major adverse cardiac events
mCi	: Millicurie
MI	: Myocardial infarction
MPI	: Myocardial perfusion imaging
MRI	: Magnetic resonance imaging
PCI	: Percutaneous coronary intervention
PES	: Paclitaxel-eluting stent

PLA : Poly lactic acid

PLLA : Poly levo lactic acid

PTCA: Percutaneous transluminal coronary angioplasty

PtCr : Platinium chromium

RCA: Right coronary artery

SES : Serolimus-eluting stents

SPECT : Single photon emission computed tomography.

ST : Stent thrombosis

Tc-99m: Technetium 99m

Ti-201 : Thallium 201

TLR : Target lesion revascularisation

TVR : Target vessel revascularization

VBT : Vascular brachytherapy

List of Tables

Table N	o. Title	Page No.
Table (1):	Different types of DES	20
Table (2):	DEB vs DES	
Table (3):	Paclitaxel coated balloons	38
Table (4:	Suggested radiopharmaceutical doses for my perfusion imaging protocols	
Table (4):	Cumulative clinical events.	57
Table (5):	Sex of the patients	92
Table (6):	Hypertension	94
Table (7):	Smoking.	95
Table (8):	Dyslipidemia	96
Table (9):	Presentation of patients	97
Table (10):	IHD	98
Table (11):	Target vessel	99
Table (12):	Target diameter	100
Table (13):	Target segment	101
Table (14):	Procedural success.	102
Table (15):	patient & procedural characteristics of the tw cases (DEB+BMS)	
Table (16) C	Cumulative clinical events	104
Table (17):	Relation between site of coronary lesion & of MPI after PTCA by DEB	
Table (18):	Relation between site of coronary lesion & of MPI after PCI by DES	
Table (19):	patient & procedural characteristics of the fo	
Table (20):	Relation between type of coating drug & reMPI	

List of Tables (Cont...)

Table N	o. Title	Page No.
Table (21):	Relation between balloon diameter, length of MPI	
Table (22):	Relation between stent diameter, length	
	& result of MPI	118

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Normal nuclear cardiac imaging scan	52
_	Stress/redistribution/reinjection/18to 24-limaging protocl	
Figure (3):	Tc-99 m imaging protocols: Two-day stress/rest.	
Figure (4):	Rest T1-201/stress Tc-99 m separate-adual-isotope protocol.	_
Figure (5):	Tc-99m imaging protocols: One-day stress/rest.	
Figure (6):	Tc-99 m imaging protocols: One-day res stress.	
Figure (7):	Tc-99 m imaging protocols: One-day rest/a pharmacologic stress	
	Tc-99m imaging protocols: rest/regadenoson pharmacologic stress	-
_	Tc-99m imaging protocols: rest/dipyridamole pharmacologic stress	•
Figure (10) :	Sex of the patients	93
Figure (11):	Hypertension	94
Figure (12):	Smoking	95
Figure (13):	: Dyslipidemia	96
Figure (14):	Presentation of patients	97
Figure (15):	: IHD	98
Figure (16):	: Target vessel	99
Figure (17):	: Target diameter	100
Figure (18):	: Target segment	101
Figure (19):	Procedural success.	102
Figure (20):	RCA lesion pre PTCA	106

Figure (21):	PTCA (DEB) to RCA lesion.	106
Figure (22):	RCA lesion pre PCI	107
Figure (23):	PCI (DES) to RCA lesion	107
Figure (24):	Relation between site of coronary lesion & result of MPI after PTCA by DEB	110
Figure (25):	Relation between site of coronary lesion & result of MPI after PCI by DES	112
Figure (26):	Relation between type of coating drug & result of MPI	115
Figure (27):	Relation between balloon diameter, length & result of MPI	117
Figure (28):	Relation between stent diameter, length & result of MPI	119

ABSTRACT

TITLE:

Comparison between drug eluting balloons and drug eluting stents in the treatment of de novo coronary lesions.

OBJECTIVES:

This Study sought to compare the effectivness of local drug delivery with DEB (PTCA only) against PCI with DES in de novo coronary lesions.

BACKGROUND:

The frequency of restenosis after PCI and need for repeat revascularization have been reduced with advent of drug eluting stents (DES).

The major disadvantage of DES is the need for longer term dual anti platelet therapy of usually 12 months duration compared to only one month of bare metal stent (BMS), also DES come with worrying risk of stent thrombosis, due to this limitation there is a proportion of about 20 to 30 % of patient where BMS are preferred .

It would be optimal if PCI could be performed without leaving behind a permanent device, one option is the use of bioabsorbable scaffolds, another alternative includes the use of drug elluting balloon (DEB).

DEB has been of proven benefit for the treatment of in-stent restenosis in several small randomized trials. However, the use of DEB in the setting of de novo coronary lesions has only been addressed in few small-randomized trials with limited power for clinical endpoints.

METHODS:

50 patients were randomized to either PTCA (DEB) group 1 or PCI (DES) group 2 with follow up after three months clinically and by myocardial perfusion imaging.

RESULTS:

Angiographic and clinical success was high (>88%) in both two groups.

CONCLUSION:

Current work suggests DEB efficacy and safety in coronary de novo lesions but does not support superiority or even equivalence to the best in class DES.

Key Words:

Drug eluting balloons

Drug eluting stents

Introduction

Percutaneous coronary intervention (PCI) has seen a tremendous increase and tends to be the most frequently used method for myocardial Revascularization.

An impressive array of stent improvements, newer drug regimens and technological advances have emerged and broadened the therapeutic spectrum for interventional cardiologists worldwide.

The recurrence of luminal narrowing due to recoil, arterial vessel remodeling and intimal hyperplasia induced by artery injury and disease progression, has compromised the results of balloon angioplasty.

The use of stents during PCI achieved both a significant decrease in the Incidence of acute complications and an improvement in patients' outcomes (*Mack et al.*, 2004).

An elevated risk of thrombosis is present both shortly after percutaneous coronary intervention (PCI) and during the period when stent struts are exposed to the circulation, prior to reendothelialization.

With the use of BMS, re-endothelialization occurs at one month after stent implantation. Due to the risk of stent thrombosis with DES and BMS, all patients are prescribed with antiplatelet therapy to prevent clot formation.

The current guidelines mandate dual antiplatelet therapy (DAT) with aspirin and clopidogrel for at least 12 months after DES percutaneous coronary intervention, and it is sometimes continued as long as possible.

Aspirin is often continued through the patient's lifetime. The drugs in DES—sirolimus and paclitaxel—reduce the risk of restenosis by inhibiting the proliferation of endothelial cells. However, this inhibition of normal healing is associated with vessel-wall remodeling and sustained exposure of stent struts to the bloodstream for months or years after implantation, leading to late stent thrombosis three to five years after stent implantation.

Preliminary results show that the reduction of dual antiplatelet therapy back to bare metal stent protocol of three months appears safe.

Thus, in elderly patients and pregnant women patients with a high risk of bleeding, DEBs are likely to become the preferred therapy as they require a shorter antiplatelet therapy, in contrast to the 12 months needed for DES.

Intro	AII	cti	n
\mathbf{H}	uu	\sim 11	VII

The shorter dual antiplatet therapy regimen that may be required by drug eluting balloons is expected to drive its adoption in the future.