ASSESSMENT OF CUMULATIVE TOXIC EFFECT OF CHLOROFORM AND XYLENE ON MICE

Submitted By

Ibrahim Helmi Ibrahim Ahmed Borghsh

B.SC. chemistry-zoology, faculty of science, Ain Shams University, 2006

A thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies & Research
Ain Shams University

APPROVAL SHEET

ASSESSMENT OF CUMULATIVE TOXIC EFFECT OF CHLOROFORM AND XYLENE ON MICE

Submitted By

Ibrahim Helmi Ibrahim Ahmed Borghsh

B.SC. chemistry-zoology, faculty of science, Ain Shams University, 2006

This thesis Towards a Master Degree in Environmental Sciences

Name Signature

1. Prof. Dr. Nadia Youssef Sadek Morcos

Professor of Biochemistry Faculty of science Ain shams university

2. Prof. Dr. Mohammed Reda Mohamed

General Director of Research Holding Company for Biological Products and Vaccines

3. Prof. Dr. Rauf Mohamed El Allawi

Professor of Biochemistry Pharmaceutical Supervisory Board

4. Prof. Dr. Hatem Mahmoud Samy El-Sebai

Professor of Biochemistry Faculty of Medicine El Monofia University

ASSESSMENT OF CUMULATIVE TOXIC EFFECT OF CHLOROFORM AND XYLENE ON MICE

Submitted By

Ibrahim Helmi Ibrahim Ahmed Borghsh

B.SC. chemistry-zoology, faculty of science, Ain Shams University, 2006

A thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under the Supervision of:

5. Prof. Dr. Nadia Youssef Sadek Morcos

Professor of Biochemistry Faculty of science Ain shams university

6. Prof. Dr. Mohammed Reda Mohamed

General Director of Research Holding Company for Biological Products and Vaccines

Acknowledgement

In the beginning, I would like to thank my God.

My grateful acknowledge for *Prof. Dr. Nadia Youssef Sadek Morcos*, Professor of Biochemistry- Faculty of Science - Ain Shams University for her kind supervision, precious guidance, helpful instructions, and powerful support

My profound and sincere thanks to *Dr. Mohammed Reda Mohammed*, Director General of Research Holding Company for Biological Products and Vaccines, "Vaccera", for his great support and his help me work experience.

It is a great honor to express my deep gratitude and appreciations to **Dr. Ahmed Abd Allah**, Lecturer of Molecular Pathology, NCI, Cairo University, for his scientific help and advice, for his great support, in handling the animals.

Abstract

Background and aim: Many volatile organic compounds (VOCs) are considered pollutants. They are widely used as constituents of household chemicals and industries. Chloroform (CLF) is present in drinking water as a byproduct of disinfection. Xylene is widely used in industry and medical laboratory as a solvent. The present study explores the cumulative toxicity of chloroform and xylene in mice under different conditions. Methods: Adult Swiss albino mice (6 mice/time subgroup) were used in the study: chloroform and xylene were dissolved in corn oil, and injected intraperitoneally. Chloroform treated groups received single injection (150 mg CLF/kg bw.), and mice were followed for 5, 24, 48, 96 and 136 hrs. Xylene treated mice were given two similar doses 24 hours apart (0.37, 0.50, 0.62 and 0.75 mg xylene/kg), and blood was taken after 30 hrs. Results: of the subgroups were compared to their matching controls (injected intraperitoneally with corn oil). Blood analysis included blood picture, liver enzymes, renal function markers, alpha-fetoprotein (AFP), and total anti-oxidant capacity (TAC). Chloroform and xylene caused marked increase in liver enzymes, renal markers, AFP, and white blood cells, accompanied by anemia and a decrease in TAO. The effects were augmented by time and dose for CLF and xylene respectively. Conclusion: chloroform and xylene are toxic to mice, and affect the blood, liver and kidneys. The toxicity increases with time for chloroform, and dose for xylene.

Key words: volatile organic compound, total anti-oxidant capacity, alphafetoprotein.

Contents

	Subjects	page
	Acknowledgement	
	Abstract	
	List of Abbreviations	III
	List of Tables	V
	List of Figures	VII
1.	Introduction	1
1.1.	Aim of the Work	4
2.	Review of Literature	5
2.1.	Volatile organic compounds (VOCs)	7
2.2.	Human exposure to VOCs	8
2.2.1.	Inhaling	11
2.2.2.	Drinking/Eating	13
2.2.3.	Touching	14
2.3.	The public health exposome	15
2.4.	Oxidative stress and DNA adduct	17
2.5.	Chronic health effects	25
2.5.1.	Teratogenicity	25
2.5.2.	Immunotoxicity	26
2.5.3.	Reproductive Effects	26
2.5.4.	Carcinogenicity and Cancer	26
2.6.	Chloroform	28
2.6.1	Uses and potential exposure	29
2.6.2	Assessing Personal Exposure	30
2.6.3	Health Hazard Information	31

2.6.3.1	Acute Effects	31
2.6.3.2.	Chronic Effects (Non-cancer)	31
2.6.3.3.	Cancer Risk	32
2.7.	Xylene	32
2.7.1	Uses and Potential Exposure	34
2.7.2.	Assessing Personal Exposure	35
2.7.3.	Health Hazard Information	35
2.7.3.1	Acute Effects	35
2.7.3.2	Chronic Effects (Non-cancerous)	36
2.7.3.3	Cancer Risk	36
3.0	Materials and Methods	37
3.1.	Materials	37
3.1.1	Experimental animals	37
3.1.2.	Chemicals and supplements	37
3.1.2.1	Chloroform	37
3.1.2.2	Xylene	38
3.2.0	Experimental design	38
3.2.1	Part I (Chloroform group)	38
3.2.2	Part II (Xylene group)	39
3.3.	The samples collection	39
3.3.1	Blood samples	39
3.4.	Methods	40
3.4.1.	Instruments used	40
3.4.1.1	Cobas 6000 instrument:	40
3.4.1.2	Sysmex (Automated Hematology Analyzer XT-1800i)	41
3.4.2	Biochemical parameters	42

3.4.2.1.	Liver function tests	42
3.4.2.2.	Tumor marker: Alpha-feto protein (AFP)	47
3.4.2.3.	Antioxidant: Total antioxidant capacity (TAC)	48
3.4.2.4.	Kidney function tests	51
3.4.2.5.	Blood picture	53
3.4.3.	Statistical Analysis	54
4.	Results	55
4.1.	Chloroform effect	55
4.2	Xylene effect	77
5.	Discussion	97
6.	Summary and Conclusion	110
7.	References	113
8.	Arabic Summary	
9.	Arabic Abstract	

List of Abbreviations

AFP	Alpha-feto protein
ACGIH	American Conference of Governmental Industrial
	Hygienists
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
ASTDR	Agency for Toxic Substances and Disease Registry
CBC	Complete blood picture
CLF	Chloroform
CYP	Cytochrome P450 enzymes
CYP2F2	Cytochrome P450 2F2
Eosi	Eosinophils
EPA	Environmental Protection Agency
НВ	Hemoglobin
Hrs.	Hours
HSDB	Hazardous Substances Data Bank
IFCC	International Federation of Clinical Chemistry and
II CC	Laboratory Medicine
IRIS	Integrated Risk Information System
LYMPH	Lymphocytes
MDH	Minnesota Department of Health
MONO	Monocytes
NEUT	Neutrophils

NIOSH	National Institute for Occupational Safety and Health
NS	Not significant
$^{1}O_{2}$	singlet oxygen
O/NS	oxidative/nitrosative stress
O3	Ozone
ONOO ⁻	Peroxynitrite
PLT's	Platelet's
RBC's	Red blood cells
ROS	Reactive oxygen species
RS	Reactive species
RTECS	Registry of Toxic Effects of Chemical Substances
TAC	Total antioxidant capacity
TB	Total bilirubin
TP	Total protein
VOCS	Volatile organic compound
WBC's	White blood cells

List of Tables

Number	Name of Table	Page
Table (2.1):	physicochemical data for Chloroform	29
Table (2.2):	Physicochemical data for Xylenes	34
Table (4.1):	Changes in ALT and AST after single chloroform injection through the experimental period (ANOVA)	56
Table (4.2):	Changes in total bilirubin, total protein and albumin after single chloroform injection through the experimental period (ANOVA)	57
Table (4.3):	Changes in total antioxidant capacity (TAO) and alpha-fetoprotein (AFP), after single chloroform injection through the experimental period (ANOVA)	60
Table (4.4):	Changes in urea and creatinine levels after single chloroform injection through the experimental period (ANOVA)	61
Table (4.5):	Changes in hemoglobin, red blood cells, platelets, and white blood cells after single chloroform injection through the experimental period (ANOVA)	63
Table (4.6):	Changes in segmented, lymphocytes, monocytes and eosinophils, after single chloroform injection through the experimental period (ANOVA)	65
Table (4.7):	Bivariate correlations between time, total antioxidant capacity (TAO %), and different markers after single chloroform injection	67

Table (4.8):	Bivariate correlations between time, total antioxidant capacity (TAO %), and blood picture after single chloroform injection	72
Table (4.9):	Changes in ALT and AST after two similar doses of xylene injections with different concentrations (ANOVA).	78
Table (4.10):	Changes in total bilirubin, total protein and albumin after two similar doses of xylene injections with different concentrations (ANOVA)	79
Table (4.11):	Changes in total antioxidant capacity (TAO) and alpha-fetoprotein (AFP), after two similar doses of xylene injections with different concentrations (ANOVA)	82
Table (4.12):	Changes in urea and creatinine levels after two similar doses of xylene injections with different concentrations (ANOVA)	83
Table (4.13):	Changes in hemoglobin, red blood cells, platelets, and white blood cells after two similar doses of xylene injections with different concentrations (ANOVA)	84
Table (4.14):	Changes in segmented, lymphocytes, monocytes and eosinophils, after two similar doses of xylene injection with different concentration after 30hrs (ANOVA)	86
Table (4.15):	Bivariate correlations between dose, total antioxidant capacity (TAO %), and different markers after two similar doses of xylene injections with different concentrations	88
Table (4.16):	Bivariate correlations between dose, total antioxidant capacity (TAO %), and blood picture after two similar doses of xylene injections with different concentrations	93

List of Figures

Number	Name of Figure	Page
Fig (2.1):	Potential sources of volatile organic compounds	6
Fig (2.2):	Sources of volatile organic compounds over the world	6
Fig (2.3):	Chemical structures and ring numbering systems for representative VOCs	8
Fig (2.4):	Total VOCs emissions by source	9
Fig (2.5):	Potential sources of some VOCs reactive intermediates	10
Fig (2.6):	Potential sources of some effects of air pollutants on human health	11
Fig (2.7):	Effects of inhalation of volatile organic compounds.	12
Fig (2.8):	Illustration of nutrition as a modulator in the interplay of health status associated with exposure to environmental pollutants	14
Fig (2.9):	Application of the public health exposure in environmental health research	16
Fig (2.10):	Public health exposure conceptual model	17
Fig (2.11):	Schematic diagram showing the induction of oxidative stress and its pathophysiological effects	19
Fig (2.12):	Reactive oxygen metabolism. Under normal conditions ~5% of respired oxygen is metabolized to water via this path.	20
Fig (2.13):	Endogenous and exogenous factors leading to reactive oxygen species (ROS) generation	21
Fig (2.14):	Reactive oxygen species (ROS) effects on different organs	23
Fig (2.15):	Hypothetical basis of the breath test for lung cancer lung cancer could result from the interaction of hereditary and environmental factors	24
Fig (2.16):	Overview of carcinogenesis	27
Fig (3.1):	The Cobas 6000 analyzer series	41

Fig (3.2):	Sysmex XT-1800i	42
Fig (4.1):	Schematic presentations for changes in ALT and AST after chloroform single injection through the experimental period.	56
Fig (4.2):	Schematic presentation for changes in total bilirubin, total protein and albumin after single chloroform injection through the experimental period	58
Fig (4.3):	Schematic presentation for changes in total antioxidant capacity (TAO) and alpha-fetoprotein (AFP), after single chloroform injection through the experimental period	60
Fig (4.4):	Schematic presentation for changes in urea and creatinine, after single chloroform injection through the experimental period	61
Fig (4.5):	Schematic presentation for changes in hemoglobin, red blood cells, platelets, and white blood cells after single chloroform injection through the experimental period	64
Fig (4.6):	Schematic presentation for changes in segmented, lymphocytes, monocytes and eosinophils, after single chloroform injection through the experimental period	66
Fig (4.7):	Correlation between time and TAO% (upper), and between changes in TAO% and ALT after single chloroform injection	68
Fig (4.8):	Correlations between changes in TAO% with changes in AST and total bilirubin, after single chloroform injection.	69
Fig (4.9):	Correlations between changes in TAO % with changes in total protein and albumin, after single chloroform injection.	70
Fig (4.10):	Correlations between changes in TAO% with changes in urea and creatinine, after single chloroform injection.	71

Fig (4.11):	Correlations between changes in TAO % with changes in RBCs and hemoglobin, after single chloroform injection.	73
Fig (4.12):	Correlations between changes in TAO % with changes in platelets and WBCs, after single chloroform injection.	74
Fig (4.13):	Correlations between changes in TAO % with changes in segmented and lymphocytes, after single chloroform injection.	75
Fig (4.14):	Correlations between changes in TAO % and eosinophils count, after single chloroform injection.	76
Fig (4.15):	Schematic presentations for changes in ALT and AST after two similar doses of xylene injections with different concentration	78
Fig (4.16):	Schematic presentation for changes in total bilirubin, total protein and albumin after two similar doses of xylene injections with different concentrations	80
Fig (4.17):	Schematic presentation for changes in total antioxidant capacity (TAO) and alpha-fetoprotein (AFP), after two similar doses of xylene injections with different concentrations	82
Fig (4.18):	Schematic presentation for changes in urea and creatinine after two similar doses of xylene injections with different concentrations	83
Fig (4.19):	Schematic presentation for changes in hemoglobin, red blood cells, platelets, and white blood cells after two similar doses of xylene injections with different concentrations	85
Fig (4.20):	Schematic presentation for changes in segmented, lymphocytes, monocytes and eosinophils, after two similar doses of xylene injection with different concentration after 30hrs.	87