

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Irrigation and Hydraulics

A Planning Model for Water Demand Management in the Nile Delta under Water Scarcity

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Civil Engineering

(Irrigation and Hydraulics)

By

Ibrahim Mohamed Mahmoud Sayed

Master of Science in Civil Engineering
(Irrigation and Hydraulics)
Faculty of Engineering, Ain Shams University, 2008

Supervised By

Prof. Dr. Mohamed Nour El-Din

Professor of Irrigation and Drainage
Faculty of Engineering
Ain Shams University

Prof. Dr. Nahla M. Abdelhamid AbulAtta

Dr. Eman Sayed Ahmed

Head of Irrigation and Hydraulic Department
Faculty of Engineering
Ain Shams University

General Director
of Water Resources
Ministry of Water Resources and Irrigation

Cairo, Egypt 2016

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Civil

Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis to identify a planning tool for

water demand management under water scarcity expected in the future by developing

suitable mathematical models, and no part of it has been submitted for a degree or a

qualification at any other scientific entity.

Ibrahim Mohamed Mahmoud Sayed

Signature

Date: 02 January 2016

Researcher Data

Name : Ibrahim Mohamed Mahmoud Sayed

Date of birth : 02 January 1964

Place of birth : Cairo

Last academic degree : Master of Science

Field of specialization : a New Approach towards Participatory Water

Management in Egypt

University issued the degree : Ain Shams University

Date of issued degree : 2008

Current job : Head of Central Directorate for Water

Resources and Uses, Planning Sector, MWRI

Thesis Summary

In the light of increasing competition for a relatively finite water resource in Egypt, it is essential to have accurate methods of predicting future water demands. Water Demands include municipal, industrial, agriculture, livestock, fish farming and unavoidable losses. On the other hand, non-withdrawal demands comprise hydropower generation, navigation and network constraints. Each type of demand has its own characteristics and is influenced by many factors such as; Population growth both urban and rural, Economic growth and economic cycle, Water pricing and related water services charges, Technological transfer and its impact on reducing consumption via losses reduction and water recirculation, Climatic changes and out coming meteorological effects.

These factors individually or combined will have a strong effect on projected water demand at various sectors.

A major challenge facing the Ministry of Water Resources and Irrigation of Egypt is to close the rapidly increasing gap between the limited water resources and the sustainable exploitation of the water resources system in support of production of economic goods and services that are required to meet national and regional development objectives.

The water requirements of the agricultural sector represent the largest component of the total water demand in Egypt. Agriculture consumes more than 80% of Egypt's share of Nile water annually. Municipal and industrial water requirements represent a relatively small portion of Egypt's total requirements. Other usages are livestock, fish farming and non-withdrawals for navigation and hydropower generation. The remaining portion has to be drained to the sea in order to maintain the ecological balance of the Delta region.

In this research, two models have been followed:

- Water Demand Forecasting Model (WDFM) to combine the various water demand component with all effects. The model represents comprehensive tools for policy making and provide water resource analyst in Egypt with versatile modules to test combination of effects on future water demand projections.

- Agriculture Sector Model for Egypt (ASME) as a planning tool to assess the impacts of various external conditions and governmental strategies on the water resources system and the food supply for Egypt. The model consists of a set of databases, modules and tools for simulation and analysis, and for the presentation of results. The model is a quantitative model of the agricultural sector; it has been used to evaluate alternative water allocation options in terms of their impacts on cropping patterns, domestic food consumption, foreign trade and employment.

Finally, a case study of Behira Governorate, Egypt, is presented to demonstrate the combination of WDFM and ASME in evaluating the future water demands and the different tools to match expected supply with projected demands, considering different target years (2017, 2022, 2027, 2037 and 2050).

<u>Key words:</u> Water Demand Forecasting. Matching Supply and Demand, Decision Support System, Agriculture Sector Model for Egypt and Modeling of Predicted Water Demand

ACKNOWLEDGEMENT

The author is greatly indebted to his supervisor Prof. Dr. Mohamed Nour El-Dein, Prof. Irrigation and drainage in Irrigation and Hydraulic Department, Faculty of Engineering, Ain Shams University, for his invaluable support and encouragement.

I am also grateful to Prof. Dr. Nahla Abu El-Atta, Head of Irrigation and Hydraulic Department, Faculty of Engineering, Ain Shams University, for her guidance and advice throughout the development of this thesis.

My particular thanks are due to Dr. Iman Sayed Ahmed, General Director of Water Resources, Ministry of Water Resources and Irrigation, for here valuable advice and engorgement during the development of the thesis.

I would also like to thank my colleagues in the Ministry of Water Resources and Irrigation.

Great thanks are due to my family - **specially my wife** - who patiently supported me during the years of research, which would not have possible without them.

Table of Contents

THESIS SUMMARY	. I
TABLE OF CONTENTS	. IV
LIST OF FIGURES	. IX
LIST OF TABLES	XII
LIST OF ABBREVIATIONS	XIV
CHAPTER (1) INTRODUCTION	
1.1. BACKGROUND 1.2. PROBLEMS DEFINITION 1.3. OBJECTIVE AND APPROACH 1.4. METHODOLOGY 1.5. RESEARCH OUTPUTS 1.6. WORK PLAN	2
CHAPTER (2) LITERATURE REVIEW	
2.1 INTRODUCTION	5
2.2 WATER RESOURCES MANAGEMENT	6
2.2.1 Main Challenges in Water Resources Management	7
2.2.2 Integrated Water Resources Management	7
2.3 DEMAND MANAGEMENT	8
2.3.1 Cropping Pattern Shifts	9
2.4 DEMAND MANAGEMENT TOOLS	10
2.4.1 Mathematical Models	10
2.4.2 Water Quality Modeling	22
2.5 PREVIOUS STUDIES IN WATER DEMAND MANAGEMENT	
MODELING.	25
2.5.1 The Agriculture Sector Model of Egypt (ASME)	25 25
2.5.2 The River Basin Simulation Model (RIBASIM)	25
2.5.3 The Simulation of Water management in the Arab Republic of Egypt SIWARE)	26
2.5.4 The Water Demand Forecasting Model (WDFM)	26
2.5.5 The Delfet Water Quality Model (DELWAQ)	26
2.6 GIS ENTITY	27
2.6.1 GIS and Environmental Problem Solving	27
2.6.2 GIS in Policy	28
2.6.3 Samples of GIS Application	28

CHAPTER (3) STUDY AREA DESCRIPTION

3.1 DESCRIPTION OF BEHIRA GOVERNORATE	
3.1.1 Geographical location	
3.1.2 Data of the Study Area	
3.2 AREA AND POPULATION	
3.3 DISTRICTS AND TOWNS OF THE GOVERNORATE	
3.3.1 Rashid	
3.3.2 Edku	
3.3.3 Al Mahmoudia	
3.3.4 Abu Hummos	
3.3.5 Kafr El Dawar	
3.3.6 Al Rahmaneya	
3.3.7 Damanhur	
3.3.8 Housh Eisa	
3.3.9 Abu Al Matameer	
3.3.10 Shubrakheit	
3.3.11 Etai El Baroud.	
3.3.12 El Delingat	
3.3.13 Koum Hamada	
3.3.14 Badr District	
3.3.15 Wadi El Natron	
3.4 POPULATION GROWTH RATES IN EL BEHIRA GOVERNORATE	
3.5 METEOROLOGY DATA	
3.5.1 Evapotranspiration data for Behira governorate	
3.5.2 Hydrogeology of the Study Area	
3.6 IRRIGATION DIVISION IN EL BEHIRA GOVERNORATE	
3.7 EL BEHIRA COMMAND AREAS	
3.8 AVAILABLE WATER RESOURCES	•
3.9 WATER DEMANDS	
3.9.1 Drinking Water and Wastewater Sector	
3.9.2 Industry Sector	
3.9.3 Agriculture	
3.10 CURRENT WATER BALANCE IN 2012	
CHAPTER (4) WATER DEMAND FORECASTING MODEL	
4.1 INTRODUCTION	
4.2 EFFECTS OF CLIMATE CHANGE ON WATER SUPPLY AND	
DEMAND IN EGYPT	
4.2.1 Effects of Climate Changes on Water Demands	
4.3 THE PHILOSOPHY OF DEMAND FORECASTING	
4.4 WATER DEMAND FORECASTING IN EGYPT	
4.4.1 Water Demand Forecasting Methodology	
4.4.1.1 Municipal Water Demand	
4.4.1.2 Industrial Water Demand	
4.4.1.3 Agricultural Water Demand	

4.4.1.4 Livestock Water Demand	65
4.4.1.5 Fish Farming Water Demand	66
4.4.2 Water Demand Collected Data Sources	66
4.4.3 Past/Present Water Demand Values	69
4.5 WATER DEMAND FORECASTING MODEL	71
4.5.1 Short-Term Water Demand Forecasting Model	72
4.5.2 Long-Term Water Demand Forecasting	74
4.5.3 Limitations and Uncertainty in Forecast Modelling	75
4.6 WATER DEMAND FORECASTING EFFECTS TESTING MODELS	76
4.6.1 Municipal Water Demand Effects	78
4.6.2 Industrial Water Demand Effects	79
4.6.3 Agricultural Water Demand Effects	80
4.6.4 Livestock and Fish Farming Water Demand Effects	82
4.7 USE OF AVAILABLE INDICATORS FOR ESTIMATING WATER	
DEMAND EFFECT COEFFICIENTS	83
4.8 RESULTS OF WATER DEMAND FORECASTING MODELS	84
4.9 WATER DEMAND FORECASTS OF DIFFERENT USAGES AND	
VARIOUS GOVERNORATES	85
CHAPTER (5) AGRICULTURAL SECTOR MODEL FOR EGYPT(ASM	(E)
	,
5.1 INTRODUCTION	92
5.2 ASME DESCRIPTION	93
5.2.1 Model features	. 96
5.2.2 Governorates	96
5.2.3 Commodities	. 98
5.2.3.1 Crop commodities for direct use	98
5.2.3.2 Crop commodities as processing input	98
5.2.3.3 Crop commodities as processing output	
5.2.3.4 Crop commodities, crop and processing by-products as feed components	
5.2.3.5 Livestock commodities	98
5.2.4 Crops	98
5.2.5 Livestock Activities and Feeds	
5.2.6 Nile Water Balance	99
5.2.7 Deep Groundwater Balance	
5.3 DATA REQUIREMENT	
5.3.1 Land	
5.3.2 Farm, Rural and Urban Population	
5.3.3 Crop Production	
5.3.4 Crop Processing	. 105
5.3.5 Crop water requirement	105
5.3.5 Crop water requirement	105 105
5.3.5 Crop water requirement	105 105 105
5.3.5 Crop water requirement	105 105 105 105
5.3.5 Crop water requirement	105 105 105 105 105

5.4.3 Municipal demand and return flow	
5.4.4 Industrial demand and return flow	
5.4.5 Irrigation efficiencies	
5.4.6 Evaporation of wetted surfaces and drainage to sea from fish ponds	
5.4.7 Drainage flows	
5.4.8 Salinity of irrigation water and climate correction factors	•
5.4.9 Water charges	
5.5 DEMAND FOR AGRICULTURAL COMMODITIES	
5.6 DATA FILES	
5.7 MODEL STRUCTURE AND EQUATIONS	
5.7.1 Model Structure	
5.7.2 Equations	
5.7.2.1 Land	
5.7.2.2 Crop rotation	
5.7.2.3 Consumption	
5.7.2.4 Costs	
5.7.2.5 Production	
5.7.2.6 Modern livestock units	
5.7.2.7 Feed mixes	
5.7.2.8 Commodity demand and supply	
5.7.2.9 Labour	
5.7.2.10 Nile water supply and demand	
5.7.2.11 Deep groundwater supply and demand	
5.7.2.12 Tomatoes and vegetables	
5.7.2.13 Other	
8 OTHER CONSTRAINTS	
5.8.1 Rural self sufficiency	
5.8.2 Sugarcane	
5.8.3 Toshka	
5.8.4 Priority Measures	
.9 OBJECTIVE FUNCTION	
.10 DATA COLLECTION	
5.10.1 Land	
5.10.2 Water	
5.10.3 Agriculture	
5.10.4 Labour	
5.10.5 Demand for agricultural commodities, trade	
5.10.6 Population and farmers	
5.11 Data Consistency Checks	
5.12 PROBLEMS, CONSTRAINTS AND DATA RELIABILITY	
5.13 CALIBRATION	
5.14 LIMITATIONS	
5.15 RUNNING ASME	
5.15.1 Simulation mode	
5.15.2 Optimisation mode	
5.16 OUTPUTS	
5 17 GIS-FILES	

5.18 OTHER ASME OUTPUTS	125
5.19 REPORTS	126
CHAPTER (6) APPLICTION TO CASE STUDY (BEHIRA GOVERNORA	TE)
6.1 INTRODUCTION	128
6.2 EFFECTS OF CLIMATE CHANGE ON WATER SUPPLY	129
6.3 PROJECTIONS AND IMPACTS OF CLIMATE CHANGE ON THE	
NILE FLOWS	131
6.4 WATER RESOURCES MANAGEMENT AND PLANNING UNDER UNCERTAINTY	132
6.5 APPLICATION OF MODELS AT BEHIRA GOVERNORATE	135
6.5.1 Water Demand Forecasting Model at Behira Governorate	137
6.5.2 Applying ASME Model at Behira governorate	146
6.5.3 Water Balance from WDFM at Behira Governorate	158
CHAPTER (7) CONCLUSIONS AND RECOMMENDATIONS 7.1 Introduction	161
7.2 Conclusions	162
7.3 Recommendations	165
REFERENCES	170
Annex A	175
Annex B	177
Annex C	182
Annex D	187

List of Figures

FIGURE 2.1 ALGORITHM OF ASME MODEL	11
FIGURE 2.2 NILECON SCHEMATIC OF REGIONS AND IRRIGATION &	
DRAINAGE FLOW	12
FIGURE 2.3 ET CHART, OPDM OUTPUT	13
FIGURE 2.4 COMPUTATIONAL FRAMEWORK OF RIBASIM MODEL	14
FIGURE 2.5 SIWARE MODEL STRUCTURE AND FUNCTION	17
FIGURE 2.6 THE BASIC FORECASTING APPROACH	21
FIGURE 2.7 DIAGRAM OF THE PHYSICAL PROCESSES IN THE WLM	24
FIGURE 2.8 FLOWCHARTS FOR SUSTAINABLE LAND DEVELOPMENT	
MODELLING USING RS & GIS	29
FIGURE 2.9 PRIORITIES FOR RICE CULTIVATION IN DELTA ZONE, EGYPT	30
FIGURE 2.10 CROP PATTERN CLASSIFICATION, INTEGRATED NOAA AND	
LANDSAT OUTPUT	31
FIGURE 2.11 STRUCTURE OF THE SDSS FOR THE NAGWAN TEST	
WATERSHD	32
FIGURE 2.12 EXISTING VS. LP-MODEL PROPOSED LAND-USE PLAN FOR	
THE NAGWANWATERSHED.	32
FIGURE 3.1 LOCATION OF BEHIRA GOVERNORATE	33
FIGURE 3.2 ADMINISTRATIVE DIVISIONS OF BEHIRA GOVERNORATE	35
FIGURE 3.3 LOCATION OF RASHID DISTRICT	36
FIGURE 3.4 LOCATION OF EDKU DISTRICT	37
FIGURE 3.5 LOCATION OF MAHMOUDIA DISTRICT	37
FIGURE 3.6 LOCATION OF ABU HOMMOS DISTRICT	38
FIGURE 3.7 LOCATION OF KAFR EL DAWAR	38
FIGURE 3.8 LOCATION OF RAHMANIA DISTRICT	39
FIGURE 3.9 LOCATION OF DAMANHOUR.	39
FIGURE 3.10 LOCATION OF HOUSH EISA DISTRICT	40
FIGURE 3.11 LOCATION OF ABU EL MATAMER DISTRICT	40
FIGURE 3.12 LOCATION OF SHUBRAKHET DISTRICT	41

FIGURE 3.13 LOCATION OF ETAI EL BAROUD DISTRICT
FIGURE 3.14 LOCATION OF EL DELINGAT DISTRICT
FIGURE 3.15 LOCATION OF KOUM HAMADA DISTRICT
FIGURE 3.16 LOCATION BADR DISTRICT
FIGURE 3.17 POPULATION PROJECTION FOR BEHIRA CITIES TO TARGET
YEARS 2017 TO YEAR 2050
FIGURE 3.18 HYDROGEOLOGY OF THE STUDY AREA
FIGURE 4.1 DIRECT AND INDIRECT FACTORS INFLUENCING WATER
DEMAND
FIGURE 4.2 WATER DEMAND FORECASTING MODEL
FIGURE 4.3 SUMMARY OF ANNUAL WATER DEMAND FORECASTING OF
DIFFERENT USAGE FOR YEARS 2012 TO 2050
FIGURE 4.4 TOTAL POPULATIONS AND CORRESPONDING ANNUAL WATER
DEMAND PER CAPITA FOR YEARS 2012 TO 2050
FIGURE 4.5 TOTAL POPULATIONS AND CORRESPONDING ANNUAL WATER
DEMAND PER CAPITA FOR YEARS 2012 TO 2050 AFTER
INTRODUCING EFFECTS
FIGURE 5.1 OVERVIEW OF THE DSS
FIGURE 5.2 SCHEMATIZATION OF ASME MODEL
FIGURE 5.3 ASME NILE WATER BALANCE SCHEMATISATION
FIGURE 5.4 CONSUMER-PRODUCER SURPLUS
FIGURE 5.5 GAMSIDE SHOWING COMPLETED RUN
FIGURE 6.1 FLOW CHART OF MODELS APPLICATION ON BEHIRA
GOVERNORATE
FIGURE 6.2 WATER DEMAND FORECASTING FOR BEHIRA GOVERNORATE,
ALEXANDRIA AND MATROUH GOVERNORATES FOR
DIFFERENT USAGES YEARS 2012 TILL 2050 WITHOUT EFFECT
FIGURE 6.3 PROJECTED WATER DEMAND WITH EFFECTS FOR DIFFERENT
USAGES IN MILLION M3/YEAR FOR BEHIRA GOVERNORATE
FIGURE 6.4 PROJECTED TOTAL WATER DEMAND OF BEHIRA VS DEMAND
OF REHIDA & ALEYANDRIA AND MATROLIH IN MILLION

	M3/YEAR FOR BEHIRA GOVERNORATE	145
FIGURE 6.5	CURRENT WATER BALANCE BEHIRA GOVERNORATE	150
FIGURE 6.6	WATER BALANCE FROM ASME BETWEEN SUPPLY AND	
	DEMAND IN YEAR 2017 FOR BEHIRA GOVERNORATE	153
FIGURE 6.7	WATER BALANCE FROM ASME BETWEEN SUPPLY AND	
	DEMAND IN YEAR 2022 FOR BEHIRA GOVERNORATE	154
FIGURE 6.8	WATER BALANCE FROM ASME BETWEEN SUPPLY AND	
	DEMAND IN YEAR 2027 FOR BEHIRA GOVERNORATE	155
FIGURE 6.9	WATER BALANCE FROM ASME BETWEEN SUPPLY AND	
	DEMAND IN YEAR 2037 FOR BEHIRA GOVERNORATE	156
FIGURE 6.10	WATER BALANCE FROM ASME BETWEEN SUPPLY AND	
	DEMAND IN YEAR 2050 FOR BEHIRA GOVERNORATE	157

List of Tables

TABLE 3.1 POPULATION OF EL BEHIRA GOVERNORATE DISTRICTS IN 2006.	44
TABLE 3.2 POPULATIONS OF DISTRICTS OF EL BEHIRA GOVERNORATE IN	
2012	44
TABLE 3.3 POPULATIONS OF TOWNS OF EL BEHIRA GOVERNORATE TILL	
THE TARGET YEAR 2050	45
TABLE 3.4 AVERAGE MONTHLY METEOROLOGICAL DATA IN BEHIRA	
(EEAA, 2005)	47
TABLE 3.5 POTENTIAL EVAPOTRANSPIRATION (ET) FOR EL-BEHIRA	
GOVERNORATE (MM/DAY).	47
TABLE 3.6 CANALS FEEDING COMMAND AREAS OF INTEGRATED	
DISTRICTS IN EL BEHIRA INTEGRATED DIRECTORATE	50
TABLE 3.7 CANALS FEEDING COMMAND AREAS OF WEST BEHIRA	
DISTRICTS	51
TABLE 3.8 NUMBER OF GROUND WATER WELLS AND SERVED AREAS	
WITH WELLS USED FOR AGRICULTURE	52
TABLE 3.9 WATER AMOUNT AND NO. OF GROUND WATER WELLS USED	
AS IRRIGATION WATER IN EL BEHIRA GOVERNORATE	52
TABLE 4.1 IMPACTS OF CLIMATE CHANGE ON WATER RESOURCES IN	
VARIOUS SECTORS	59
TABLE 4.2 WATER DEMAND FORECASTING EFFECTS MEMBERSHIP	
COEFFICIENTS FOR DIFFERENT CATEGORIES OF USAGE	83
TABLE 4.3 SUMMARY OF ANNUAL WATER DEMAND FORECASTING OF	
DIFFERENT USAGE TILL YEAR 2050	85
TABLE 4.4 WATER DEMAND FORECASTING EFFECTS MEMBERSHIP	
COEFFICIENTS FOR DIFFERENT CATEGORIES OF USAGE FOR	
THE PERIOD 2012 TO 2050	89
TABLE 4.5 SUMMARY OF WATER DEMAND FORECASTING OF DIFFERENT	
USAGE TILL YEAR 2050 AFTER INTRODUCING EFFECTS	90