Left Ventricular Deformation in Different Types of Betathalassaemia

by

Wessam Abdel Raouf Ahmed

M.B, B.ch., M.S.

A Thesis Submitted in Partial Fulfillment of the Requirements for the **Doctorate Degree in cardiology**

Under supervision of

Professor Doctor Wafaa Anwar El-Aroussy

Professor of cardiology-cardiology department Faculty of medicine-Cairo University

Professor Doctor Hala Salah El-Din Hamzah

Professor of paediatrics-paediatric department Faculty of medicine-Cairo University

A. Professor Doctor Amr Hassan Moustafa

Assistant professor of cardiology-cardiology department Faculty of medicine-Cairo University

Doctor Reda Hussein Diab

Lecturer of cardiology-cardiology department Faculty of medicine-Cairo University

Cardiology department
Faculty of medicine
Cairo University
©2016

"Isn't health a miracle? And life itself?"

Anton Chekhov

DEDICATION

- To my beloved parents who taught me to love books and knowledge and made every effort to help me learn, succeed and follow my dreams; to you I am indebted for every moment of joy in my life
- To my sweetest Nourhan for being always there ... even your mere listening to me complaining was such an indispensible remedy for my heart and mind
- To my lovely Moustafa for the never-failing sympathy and encouragement; you succeeded in bringing me back to work when everything went wrong.
- To those who inspired this work but will never read it ... my beta-thalassaemic patients who are still fighting their endless battle for life

And to all those who taught me, helped me, cared for me, and gave me time out of their full schedule obligingly; my work wouldn't have been so special without your kindness and help even if you have no idea how much it meant to me.

List of contents

- Abstract	i
- Acknowledgement	iii
- List of tables	iv
- List of figures	V
- List of abbreviations	viii
- Introduction	1
I. Aim of the study	3
II. Review of literature	4
Chapter 1- Understanding the (3-thalassaemia	4
1.1 The normal haemoglobin	4
1.1.1 Structure of haemoglobin	4
1.1.2 Genetic control of the globin subunits	7
1.2 Thalassaemia	11
1.2.1 Recognition of thalassaemia as a distinct disease	11
1.2.2 The burden of thalassaemia	13
1.2.3 The 1-thalassaemias	14
1.2.4 Classification of 1-thalassaemias	17
1.2.5 Pathophysiology of 1-thalassaemia	18
.2.6 Determinants of 1-thalassaemia severity	23
	24 29
Jiiablei &- Valuivyastulai uelalluellielli III b-liialassaellilas	

2.1 The b-thalassaemic heart and vessels	29
2.1.1 Iron-mediated cardiac injury	30
2.1.2 Anaemia-mediated heart disease	40
2.1.3 Thrombo-embolism in b-thalassaemia	41
2.1.4 1-thalassaemia related myocarditis/cardiomyopathy	51
2.1.5 Generalised connective tissue degeneration	52
2.1.6 Factors aggravating 1-thalassaemic cardiac injury	53
2.2 Progression from b-thalassaemic cardiovascular injury to heart disease	54
2.2.1 Heart failure in 1-thalassaemia	54
2.2.2 Left ventricular hypertrophy and/or diastolic abnormalities	56
2.2.3 Arryhythmia in 1-thalassaemia	56
2.2.4 Pericardial abnormalities in 1-thalassaemia	57
2.2.5 Endocardial Involvement	57
2.2.6 Vascular disorders in 1-thalassaemia	58
₡ 2.3 Evaluation of the b-thalassaemic heart	59
$m{\phi}$ 2.4 Treatment options for the b-thalassaemic heart disease	52
2.4.1 Recommendations for cardiovascular management in thalassaemia	63
2.4.2 Other suggested cardio-protective medications	65
Chapter 3-An appreciation of the ventricular deformation	67
3.1 The mechanics of cardiac movement	67
3.1.1 The myocardial band	67
3.1.2 Differential myocardial deformation throughout the cardiac cycle	68
3.2 Myocardial strain	73

3.2.1 Basics of strain measurement	73	
3.2.2 Echocardiographic assessment of strain	79	
3.2.3 Speckle tracking-derived LV strain	81	
III. Patients And Methods	87	
IV. Results	95	
V. Discussion	104	
VI. Study limitations	108	
VII. Conclusions and recommendations	109	
IIX. References	111	
Master sheet		
Arabic summary		

Abstract

Title

Left Ventricular Deformation in Beta-thalassaemia Major and Intermedia

Background

Among all haemoglobinopathies 1-thalassaemias pose the most important global public health problem, with cardiac dysfunction being the most important determining factor for the survival in both transfused and non-transfused patients. Current guidelines don't recommend LV strain or rotation assessment for those patients, however; they can allow for early identification of patients at risk of future overt dysfunction.

Aims

To assess the value of speckle tracking-derived strain in detecting early LV systolic deformation abnormalities in both b-thalassaemia intermedia and b-thalassaemia major, who had been compliant to treatment since their infancy and whose m-mode derived ejection fraction and LV dimensions were normal, as well as to illustrate the pattern of LV systolic deformation in the two main b-thalassaemia phenotypes, and its possible difference from normal age-matched pattern.

Methods

The study population comprised 3 groups: group 1 included 26 patients with 1-thalassaemia major, group 2 included 24 patients with b-thalassaemia intermedia, and group 3 included 21 age-matched normal individuals. All subjects had arterial pressure measured, serum ferritin, and conventional echocardiography in addition to the evaluation of speckle tracking-derived LV strain and rotational mechanics.

Results

Systolic and diastolic arterial blood pressures were significantly lower in both 1-thalassaemia groups than in normal (P: 0.000), All enrolled individuals, including both 1-thalassaemic patients groups had normal ejection fraction. There was no statistically significant difference in LV cavity dimensions or indexed volumes among the 3 groups. The global radial and circumferential strain were significantly different among groups with values lower in both 1-thalassaemia groups than in the normal control group (P: 0.000) with no significant difference between the 2 b-thalassaemia

groups (P: 0.6518). There was a significant difference in the peak LV twist, and peak systolic apical rotation (P:0.000 for both parameters), being lower in b-thalassaemia groups, with no significant difference between the 2 b-thalassaemia groups (P: 0.055), and (P:0.37088) for peak twist and peak apical rotation respectively. No significant correlation was found between serum ferritin and any of the speckle tracking parameters

Conclusion

Young patients with both b-thalassaemia intermedia and well-treated b-thalassaemia major have lower left ventricular global radial and circumferential strain values than normal as well as different rotational pattern.

Keywords: thalassaemia, major, intermedia, speckle tracking, twist

ACKNOWLEDGEMENTS

First of all I have to pay professor doctor Wafaa El-Arousy many thanks for her sound guidance, for her sincere supervision, and for her generous cooperation and help

Special thanks to professor doctor Hala Hamza for her continuous help, for the time and effort she spent to ensure proper patients' enrolment, and for all she did to make this work possible

I'd like to express my fervent appreciation to doctor Amr Hassan and doctor Reda Diab for all their supervision, for their kind support, and for their time

Many thanks to professor doctor Amal Elbeshlawi and her co-working haematologists who kindly shared patients' data with us

Thanks to my family for staying the course with me, and to my friends who kindly feed me back about the manuscript

Finally I wish to extend my thanks to doctor Ghada Said for helping with the statistical work, and to everyone who kindly contributed in any way to this thesis

List of tables	Page
Table 1. Normal developmental transition of human haemoglobin.	10
Table 2. Common clinical and haematological features of thalassaemia major and intermedia.	17
Table 3. Multi-system complications of b-thalassaemia.	27
Table 4. The main pathologies incriminated in b-thalassaemic heart disease.	29
Table 5. Effects of high intracellular iron and reactive oxygen species (ROS) on cardiomyocytes.	35
Table 6. Nitric oxide dysregulation in b-thalassaemia.	45
Table 7. Comparison of Tissue Doppler Imaging and Speckle Tracking Echocardiography techniques.	83
Table 8. Basic characteristics of the study population.	96
Table 9. Left ventricular systolic deformation parameters.	98

List of figures	
Figure 1. The biosynthetic pathway of haem (From: Harvey RA, Ferrier DR. Protein structure and function.	5
Figure 2. The X-ray crystallography determined structure of the haemoglobin molecule.	6
Figure 3. Normal a-b dimmers.	7
Figure 4. Developmental pattern of haemoglobin expression.	8
Figure 5.The genetic control and mechanisms of haemoglobin synthesis.	9
Figure 6. The American paediatrician and haematologist Thomas Beneton Cooley	12
Figure 7. Expression of the b-globin gene.	16
Figure 8. Schematic representation of the ineffective erythropoiesis and haemolysis in b-thalassaemia.	19
Figure 9. Elimination of free a globin by cellular protein quality control systems.	21
Figure 10. Abnormal a-to-b ratio in b-thalassaemias.	21
Figure 11. Summary of the pathophysiology of b-thalassaemia and the resulting multi-system pathology.	26
Figure 12. Iron metabolism in transfusion-independent patients with thalassaemia intermedia.	31
Figure 13. Iron absorption imbalance in thalassaemia intermedia.	32
Figure 14. The reduced form of iron Fe+2 reaction with hydrogen peroxide (H2O2) generating OH.	35
Figure 15. Uptake, storage, and toxicity of cardiac iron in a myocyte.	37
Figure 16. Figure 16. Effect of iron chelators on the myocardium.	39
Figure 17. Factors leading to a reduced systemic vascular resistance and ultimately clinical heart failure in patients with b-thalassaemia.	41
Figure 18. Factors contributing to hypercoagulability in thalassaemia patients.	42

Figure 19. Intact red cells carry a reservoir of NO in the form of nitrite.	44
Figure 20. Pathophysiological consequences of intravascular haemolysis.	46
Figure 21. Progression of pulmonary hypertension in thalassaemia.	47
Figure 22. The prothrombotic effect of iron on erythrocytes.	49
Figure 23. Patchy foci of late gadolinium enhancement in a patient with thalassaemia major.	52
Figure 24. The contribution of iron overload into the main pathologic findings in b-thalassaemia.	54
Figure 25. Pseudoxanthoma elasticum-like disorder in b-thalassaemia.	59
Figure 26. The helical arrangement of the myocardium.	68
Figure 27. A diffusion tensor magnetic resonance imaging illustration of myocardial fibres' arrangement.	69
Figure 28. Schematic representation of rotational motion of the heart.	71
Figure 29. Deformation of a 3D object is described by three normal and six shear strain components.	75
Figure 30. Shear strain calculation.	76
Figure 31. A hypothetical myocardial segment to illustrate the complex myocardial motion and deformation.	77
Figure 32. Linking the myofibre architecture and 3-directional deformation of the left ventricle.	78
Figure 33. The pattern-tracking process in echocardiographic speckle tracking imaging	81
Figure 34. Speckle tracking technology.	82
Figure 35. Left ventricular bull's eye generation and display.	85
Figure 36. Schematic diagram of the different left ventricular segmentation models.	86
Figure 37. The modified Simpson's method.	90
Figure 38. Segmentation of the region of interest in the short-axis view	92
Figure 38. T2* analysis.	94

Figure 39. The study population.	95
Figure 40. Systolic and diastolic arterial blood pressure difference among study groups.	97
Figure 41. Difference of global systolic radial strain among the 3 study groups.	99
Figure 42. Difference of the systolic mean basal radial strain among the 3 study groups.	99
Figure 43. Difference of the global systolic apical radial strain among the 3 study groups .	100
Figure 44. Bull's eye for radial strain.	101
Figure 45. Global systolic longitudinal strain.	102
Figure 47. Left ventricular rotation.	103

List of abbreviations

2D two-dimensional

AHSP a-haemoglobin stabilising protein

ADP adenosine diphosphate ALA o-Aminolevulinic acid

ALAS o-aminolevulinic acid synthase

ASE American society of echocardiography

ATP adenosine triphosphate

BCL11A B-cell lymphoma 11 A protein encoding gene

CMR cardiovascular magnetic resonance

COUP-TFII chicken ovalbumin upstream promoter-transcription factor II

DMT1 divalent metal transporter 1

DNA deoxy ribonucleic acid

DTI Doppler tissue imaging

EACVI European association of cardiovascular imaging

EAE European association of echocardiography

EF ejection fraction

EKG_ electrocardiogram

EKLF erythroid Kruppel-like factor

FtH1 ferritin heavy chain

FtMt mitochondrial ferretin

GATA-1 "GATA"-binding transcription factor-1

GDF 15 growth and differentiation factor 15

HFPEF heart failure with preserved ejection fraction

Hb haemoglobin

HCV hepatitis C virus HS hypersensitive site

HIV human immunodeficiency virus

H2O2 hydrogen peroxide

HIFs hypoxia-inducible transcription factors

Ig immunoglobulin

IL interleukin

IMD intimal-medial thickness

IRE/IRP iron-responsive element/iron-regulatory protein

IVP intra-ventricular pressure

IVS intervening sequence

KLF1 erythroid Kruppel-like factor 1

LCR locus control region

LGE late gadolinium enhancement

LV left ventricular

LVDCs L-Type voltage-dependent channels

MCV mean corpuscular volume

MCH mean corpuscular haemoglobin content

MMPs matrix metalloproteinases

mRNA messenger ribonucleic acid

NDT non-transfusion-dependent thalassaemias

NF-E nuclear factor, erythroid

NT-proBNP N-terminal pro-B-type natriuretic peptide

NTBI non-transferrin-bound iron species

O2 superoxide

PyrR pyrimidine nucleotide mRNA-binding regulatory protein

RBC red blood cell

RES reticuloendothelial system

ROI region of interest

ROS reactive oxygen species

SEM scanning electron microscopy

SSP stage selector element binding protein

T2-STIR T2-weighted short Tau inversion recovery

TDT transfusion-dependent thalassaemias

TFR transferrin receptor

TNF tumor necrosis factor

TWGF twisted Gastrulation Factor

Ub polyubiquitin

UPS ubiquitin-proteasome

VG velocity gradient