Ischemic mitral regurgitation Comparative study between different techniques of repair

A Thesis Submitted for partial fulfillment of MD degree

In Cardiothoracic Surgery

By

Mohamed Awad Allah El Sabry

Master degree of General Surgery

Under Supervision of

Prof. Dr. / Ahmed Bahig Elkerdany

Professor and Head Cardiothoracic Surgery Department Faculty of Medicine – Ain Shams University

Prof. Dr. / Hosny Mostafa Kamal Elsallab

Professor and Head of Cardiothoracic Surgery Department Faculty of Medicine for Girls – Al-Azhar University

Dr. / Hany Abd-El. Maboud Metwaly

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Dr. / Ayman Mahmoud Ammar

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2016

دراسة مقارنة للطرق المختلفة لإصلاح إرتجاع الصمام الميترالى الناتج عن قصور الشرايين التاجية

رسالة توطئة للحصول على درجة الدكتوراة في جراحة القلب و الصدر مقدمة من

الطبيب/محمد عوض الله الصبري

ماجستير الجراحة العامة تحت إشر اف

الأستاذ الدكتور/ أحمد بهيج الكرداني

أستاذ ورئيس قسم جراحة القلب والصدر كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ حسنى مصطفى كمال السلاب

أستاذ ورئيس قسم جراحة القلب والصدر كلية طب البنات - جامعة الأزهر

الدكتور/ هانى عبد المعبود متولى

أستاذ مساعد جراحة القلب والصدر كلية الطب - جامعة عين شمس

الدكتور/ أيمن محمود عمار

أستاذ مساعد جراحة القلب والصدر كلية الطب - جامعة عين شمس

كلية الطب - جامعة عين شمس **2016**

سورة البقرة الآية: ٣٢

ACKNOWLEDGMENT

Thanks are one emotion that flows directly from the heart and it is a very wonderful feeling that never goes away.

First and foremost, thanks are due to **ALLAH** the most Merciful and the Mightiest to whom I relate my success in achieving any work in my life.

I would like to express my sincere gratitude and deepest appreciation to Prof. Dr. AHMED BAHIG ELKERDANY, Professor of Cardiothoracic surgery, for his kindness, precious advice, continuous encouragement and guidance throughout the preparation of this work.

I am deeply grateful to **Prof. Dr. HOSNY MOSTAFA KAMAL ELSALLAB**, Professor of Cardiothoracic surgery, for His patience, guidance, sincere help and meticulous comments have enlightened my way through out this work.

I really express my gratitude to, **Prof. Dr. HANY ABD-EL.MABOUD METWALY** Assistant Professor of Cardiothoracic Surgery, for his support, attention, and supervision throughout this work.

Also, I am deeply grateful to **Prof. Dr. AYMAN MAHMOUD AMMAR** Assistant Professor of Cardiothoracic surgery, for his generous supportive attitude, extreme unlimited cooperation and understanding.

I will never forget to thank all **my patients**, to whom this study was carried out, without their cooperation this thesis was never going to appear.

Finally, I wish to extend my heartfelt gratitude to all My colleagues and Every one helped me for their valuable help and support throughout this work and always.

List of Contents

Introduction	1
Aim of the Work	5
Review of Literature	6
- Surgical anatomy of mitral valve	6
- Definitions and classification of ischemic mitral regurgitation	21
- Pathophysiology of ischemic mitral regurgitation	31
- Diagnosis and assessment of ischemic mitral regurgitation	
- Treatment of ischemic mitral regurgitation	43
Patients and Methods	61
Statistical methods	87
Results	90
Discussion	92
Summary &Conclusion	127
References	138
Arabic Summary	143

List of Abbreviation

ACEi Angiotensin-Converting Enzyme

inhibitors.

AMI Acute Myocardial Infarction.
AML Anterolateral Mitral Leaflet.

AP Antero **P**osterior.

ATA Anterior leaflet Tethering Angles.

CABG Coronary Artery Bypass Graft.

CAD Coronary Artery Disease.

CAPRICOR Carvedilol Post- Infarct Survival

Controlled Evaluation

CARMEN Carvedilol and ACE Inhibitor Remodeling

Mild Heart Failure Evaluation.

CHF Chronic Heart Failure.

CIMR Chronic Ischemic Mitral Regurgitation.
CRT Cardiac ResynchronizationTherapy.

ECG Electro Cardio Graphy.

ED End **D**iastole.

EDD End **D**iastolic **D**imension.

EF Ejection Fraction.

ERO Effective Regurgitant Orifice.

ES End Systole.

ESD End Systolic Dimension.

IAPB Intra Aortic Pallon Bump.

Inter Commissural.

IMR Ischemic Mitral Regurgitation.

IPMD Interpapillary Muscle Distance.

IVC IsoVolemic Contraction.IVR IsoVolemic Relaxation.

LA Left Atrial.

LIMA Left Internal Mammary Artery.

LV Left Ventricle.

LVESD Left Ventricular End Systolic Dimension.
LVESV Left Ventricular End Systolic Volume.

MI Myocardial Infarction.
MR Mitral Regurgitation.

MRI Magnetic Resonance Imaging

MV Mitral Valve.

MVR Mitral Valve Replacement.

NYHA New York Heart Association.

PM Papillary Muscle.

PML Posteromedial Papillary Muscle
 PTA Posterior leaflet Tethering Angles.
 PTCA Percutaneous Transvenous Coronary

Angioplasty.

PTMA Percutaneous Transvenous Mitral

Annuloplasty.

RJA Regurgitant Jet Area.
RV Regurgitation Volume.

SAVE Survival And Ventricular Enlargement.

SL Septal to Lateral.

SOLVD Studies Of Left Ventricular Dysfunction.
SWMA Segmental Wall Motion Abnormality.

TA Tenting Area.

Trans- Esophageal Echocardiography.
Tenting Height.
Trans-Thoracic Echocardiography. TEE

TH

TTE

List of Figures

Figure 1	Schematic drawing of mitral valve leaflets and Subvalvular apparatus.	10
Figure 2	Anatomic-clinical nomenclature of scallops.	12
Figure 3	Mitral valve anatomy.	18
Figure 4	Carpentier's classification of mitral regurgitation.	28
Figure 5	A human mitral annulus obtained using three-dimensional trans esophageal echocardiography.	32
Figure 6	Pathophysiologic factors and their interactions in determining ischemic mitral regurgitation.	42
Figure 7	Mechanism of ischemic mitral regurgitation.	42
Figure 8	Echocardiographic image in 4-chamber view in mid-systole.	52
Figure 9	Images of mitral apparatus on echocardiography.	53
Figure 10	Two-dimensional TTE assessment of chronic ischemic mitral regurgitation severity.	57
Figure 11	Three-dimensional reconstruction of central regurgitation jet and mitral valve annulus.	59

Figure 12	How chordal cutting can relieve IMR.	76
Figure 13	Infarct plication to restore papillary muscle position.	77
Figure 14	Papillary Muscle Sling.	79
Figure 15	Relocation of the posterior papillary muscle.	80
Figure 16	Posterior mitral valve restoration.	81
Figure 17	The Coapsys device.	84
Figure 18	Age distribution among studied groups.	93
Figure 19	Gender distribution among studied groups.	94
Figure 20	Distribution of risk factors among studied groups.	96
Figure 21	History of previous MI among studied groups.	97
Figure 22	Angina classification.	98
Figure 23	NYHA classification among the two groups.	99
Figure 24	Pre-operative arrhythmia.	100
Figure 25	Previous IABP.	101
Figure 26	EF changes.	103

Figure 27	Dimension changes.	103
Figure 28	Preoperative grade of MR.	104
Figure 29	Extent of vessels.	105
Figure 30	Total bypass time among studied groups.	106
Figure 31	Ischemic time among studied groups.	107
Figure 32	Type of cardioplegia.	108
Figure 33	Number of grafts.	110
Figure 34	Time of ventilation among studied groups.	111
Figure 35	ICU stay among studied groups.	112
Figure 36	Hospital stay among studied groups.	113
Figure 37	Use of Inotropic support.	114
Figure 38	Post op. IABP.	115
Figure 39	Post-operative function.	117
Figure 40	Post-operative dimension changes.	117
Figure 41	Grade of MR improvement.	118

Figure 42	Complications among studied groups.	120
Figure 43	The hospital Mortality for both groups.	121
Figure 44	Classification of NYHA improvement.	122
Figure 45	EF improvement.	124
Figure 46	Dimension changes.	125
Figure 47	Grade of MR improvement.	127

List of Tables

Table 1	The mitral valvular complex.	7
Table 2	Classification of mitral chordae tendineae.	19
Table 3	Angiographic grading system for mitral regurgitation.	24
Table 4	Carpentier's classification of mitral regurgitation.	27
Table 5	Quantitative Grading of Severity of Mitral Regurgitation.	55
Table 6	Age distribution among studied groups.	93
Table 7	Gender distribution among studied groups.	94
Table 8	Distribution of risk factors among studied groups.	95
Table 9	History of previous MI among studied groups.	96
Table 10	Angina classification.	97
Table 11	NYHA classification.	98
Table 12	Pre-operative arrhythmia.	99
Table 13	Previous IABP.	100
Table 14	EF& Dimension.	102

Table 15	Pre-operative grade of MR.	104
Table 16	Extent of vessels.	105
Table 17	Total bypass time among studied groups.	106
Table 18	Ischemic time among studied groups.	107
Table 19	Type of cardioplegia.	108
Table 20	Number of grafts.	109
Table 21	Time of ventilation among studied groups.	110
Table 22	ICU stay among studied groups.	111
Table 23	Hospital stay among studied groups.	112
Table 24	Use of inotropic support.	113
Table 25	Post op. IABP.	114
Table 26	Post-operative dimensions and function.	116
Table 27	Grade of MR improvement.	118
Table 28	Complications among studied groups.	119
Table 29	The hospital Mortality for both groups.	120

Table 30	Classification of NYHA improvement.	122
Table 31	EF improvement & dimension changes.	124
Table 32	Grade of MR improvement.	126