Ain Shams University

Faculty of Science

Geophysics Department

Mapping Reservoir Changes Using 4D Seismic Data at Simian Field, Offshore Nile Delta – Egypt

A Thesis Submitted for the Degree of Doctor of Philosophy In Sciences (Geophysics)

By

Ahmed Hosny Abdul Fadeel

(B.Sc. in Geophysics–Faculty of Science–Ain Shams University, 2009) (M.Sc. in Geophysics–Faculty of Science–Ain Shams University, 2014)

Submitted to

Geophysics Department
Faculty of Science
Ain Shams University

Supervised by

Prof. Dr. Abd El- Naser Mohamed

Dr. Karam Samir Ibrahim Farag

Abdel Halim Helal

Lecturer of Geophysics

Professor of Geophysics

Geophysics Department - Faculty of Science

Geophysics Department - Faculty of Science

Ain Shams University

Ain Shams University

Cairo – 2017

Acknowledgements

Thanks to Almighty Allah for blessing me with the intellectual capabilities and helping me throughout the challenging period of my graduate work. I could have never done it Without His countless blessings and mercy on me.

Thank to Professor Dr. **Abd El-Naser Mohamed Helal** for all his technical support and encouragement he is not only supported me in my research work but also encouraged me to grow my professional skills and leadership abilities. He has always helped me to come out of all difficult periods that I had during my work. I cannot list his contribution in building my career in the limited space here, but it is his efforts and encouragements to me that today. I am very close to achieve the biggest goal of my life. I would like to thank **Dr. Karam Samir Ibrahim Farag** for his kind supervision of this thesis.

I am very grateful to my colleagues at Ain Shams University and Rashid Petroleum Company and everyone who has offered advices, suggestions and provided support when it was most needed.

I would like to thank Rashid Petroleum Company for providing and releasing the data sets and software tools. Special thanks to the Egyptian General Petroleum Corporation (EGPC) for permission to publish this work.

Finally, I would like to express my deepest gratitude to my parents for trusting me, supporting me, praying for me and giving me the moral support throughout my graduate studies.

Abstract

Time-lapse seismic inversion method to reservoir management has proven to be a vital tool in the oil industry because of its effectiveness in tracking the pressure and saturation changes within the reservoir as well as identifying isolated bypassed accumulations.

The 4D inversion process is critiqued to explore the pros and cons of 4D seismic inversions and how these could be improved. The major draw backs of the method are dependence on well log data quality, wavelet estimation and initial model construction whilst the potential gains are improved geological and geophysical classification of a seismic volume to a higher level than is possible with full-stack seismic data alone

A 4D pre-stack simultaneous inversion was applied at the Simian gas field, part of the West Delta Deep Marine concession(WDDM), offshore Egypt with the aim of exploring the potential of this approach for time lapse quantitative interpretation. The Simian field is submarine channel based gas reservoirs that extend laterally over 25 km². The nature of this channel has been well defined using full-stack seismic interpretation and from this producing wells have been drilled.

Four wells are analyzed in a 4D rock feasibility study to demonstrate that 4D seismic inversion will be beneficial and show which physical attributes will help to estimate saturation and pressure changes in the filed using time lapse seismic data. The extracted attributes were the shear and acoustic impedances was shown to give the optimum separation for the effectiveness of the saturation and pressure changes.

A base angle stacks 15°,15-30°,30-45° and monitor angle stacks 0-15°,15-30°,30-45° from simian field were inverted for P-wave impedance (Zp), S-wave impedance (Zs) and density using 4D seismic inversion method, and from these attribute cubes shear impedance and acoustic impedance was mapped across the seismic volumes, shear and acoustic impedance difference volumes were used to map the pressure and saturation changes through the reservoir as well, direct comparison is made between the difference output volumes for the original seismic amplitude to emphasize the benefits of 4D seismic inversion and justify the process.

A base and monitor seismic surveys from the Simian field were inverted during this research. The field has passed through high gas production at the first. These seismic surveys were analyzed for time-lapse impedance changes due to the differences in the produced hydrocarbons and water production. Check-shot corrected well data as, well as interpreted horizons, were integrated in the inversion process. Two independent wavelets were extracted from both base and monitor surveys, and combined to form an all-encompassing frequency and amplitude wavelet. The base and monitors were jointly inverted. This is because of the reduction in inconsistencies that are associated with independent inversions of surveys and the production related changes expected in time-lapse inverted seismic data.

Inversion results showed, the impedance difference across the field for the various monitor surveys. Areas surrounding production wells show great changes in impedance. A statistical analysis of the inversion results also shows increase in impedance across the field for the subsequent monitor. Structural and stratigraphic interpretation of the time-lapse inverted data also confirmed that the area of high production. This high production supported the impedance changes within the field. Time-lapse acoustic impedance inversion of the Simian pre-stack seismic data has revealed the impacts of production, dynamic fluid changes on main identified geologic structures, fluid front migration, fluid communication across structures and segments and other identified stratigraphic elements.

The results achieved in this study suggest that the application of the proposed 4D seismic inversion methodology leads to quite reasonable predictions. Hence, using this method instead of the other 4D inversion methods will have the effect of increased production and economic efficiency.

CONTENTS

Α	Acknowledgements I			
Abstract				
1	Intro	oduction	1	
	1.1	General Overview	1	
	1.2	What is Time-Lapse Seismic?	3	
	1.3	The role of Time-lapse Seismic and Production Optimization	5	
	1.3.	Clearer Understanding a hydrocarbon reservoir	5	
	1.3.	2 How good is our expectation?	7	
	1.4	Time-Lapse feasibility and Interpretation Studies	12	
	1.4.	1 International Case Studies	13	
	1.5	Gas production and Reservoir Compaction	22	
	1.6	Surface Subsidence	22	
	1.7	Well Integrity Monitoring	25	
	1.8	Reservoir Compaction	26	
	1.9	Geomechanics - Monitoring and modelling	27	
	1.10	Monitoring the Whole Earth	31	
	1.11	Main Objectives and Scope of Work	32	
	1.12	Methodology	33	
2	4D 9	Seismic Reservoir Monitoring	37	
	2.1	Early Observation	37	
	2.2	A growing number of The Published Examples	39	
	2.3	Reservoir Geomechanics: An overview	42	
	2.4	Stress and Strain around a Compacting Reservoir	43	
	2.5	Integrating Geomechanics and Time-Lapse Seismic	49	
	2.6	Velocity Stress-Strain relationships	53	
	2.7	Rock Physics Models: A Brief Overview	54	

	2.7.	1	Macroscopic Earth Models	54
	2.7.	2	Microscopic Models	56
	2.7.	.3	Static and Dynamic Moduli	57
	2.8	The	Reliability of Core Data	59
	2.9	The	R factor	62
	2.10	Anis	otropic velocity changes	66
	2.11	Inde	ependent Calibration of Stress Sensitivity by 4D seismic	67
3	Reg	ional	Geological Setting	72
	Introd	luctio	n	72
	3.1	Expl	oration History	72
	3.2	Stru	ctural Setting	81
	3.2.	1	Rosetta Fault	82
	3.2.	2	East-West Faults	82
	3.2.	.3	Tectonic Evolutions	83
	3.3	Stra	tigraphic Setting	84
	3.3.	.1	Pre-Miocene	85
	3.3.	2	Miocene (23.03 – 5.33 Ma)	85
	3.3.	.3	Pre-Messinian (23.03 – 7.25 Ma)	86
	3.3.	4	Messinian (7.25 – 5.33 Ma)	86
	3.3.	.5	Pliocene to Recent	90
	3.4	Petr	oleum System	93
	3.4.	1	Source Rock	93
	3.4.	2	Reservoir Sedimentology	99
	3.4.	.3	Trapping mechanism	109
	3.4.	.4	Migration and Timing	112
	3.5	Geo	logy of Simian field	112
	3.5.	1	Overview	112
	3.5.	2	Location	113

3.5.3		3	Stratigraphic level for simian	114
	3.5.	4	Integrating S imian Facies against Seismic data	115
	3.6	Geo	ological Model of Simian Field	118
	3.6.	1	Stage 1 – Initial Incision Event	118
	3.6.	2	Stage 2 – Initial Canyon Fill	118
	3.6.	3	Stage 3 – Fill and Re-incision	118
	3.6.	4	Stage 4 – Channel in-fills completely	118
	3.7	Geo	ological Setting	120
	3.7.	1	Trapping Mechanism of the Field	121
	3.7.	2	Field Discovery	122
	3.8	Seis	smic Data	126
	3.8.	1	Seismic Interpretation	127
ļ	Fea	sibili	ty Assessment of a Time-Lapse Seismic Survey	130
	4.1	Ger	neral Rock Physics	130
	4.2	Velo	ocity-Porosity Relation	130
	4.3	Flui	d Substitution	131
	4.4	The	Gassmann Assumptions	134
	4.5	The	Gassmann Limitations	134
	4.5.	1	Frequency Range	134
	4.5.	2	Isotropy	135
	4.5.	3	Mineralogy	135
	4.6	Roc	k-physics Models for Dry Rocks	136
	4.6.	1	Elastic bound models	136
	4.6.	2	The Voigt and Reuss average models	136
	4.6.	3	Hashin-Shtrikman Lower and Upper Bounds	138
	4.6.	4	Contact Theories	140
	4.6.	5	The contact-cement model	144
	4.6.	6	The constant-cement model	145

	4.7	Simian 4D feasibility study	146
	4.8	Summary	146
	4.9	Introduction and background	148
	4.10	Working Data Set	149
	4.11	4D Philosophy	150
	4.12	Workflow and Implementation	151
	4.13	Simian Rock Feasibility Study Results	155
	4.14	Variation of Seismic properties with Pressure and Saturation	155
	4.15	Concluding Remarks	171
5	Time	e-Lapse Processing Flow	172
	5.1	Introduction	172
	5.2	Reprocessing of Time-Lapse Seismic Data	173
	5.3	Acquisition Parameters	174
	5.4	Base and Monitor Surveys Re-gridding and Regularization	177
	5.5	Time-lapse P-wave Data Interpretation	184
	5.5.3	1 Introduction	184
	5.5.2	2 Interpretation Overview	185
	5.6	Data Comparison	186
	5.7	Normalized RMS	188
	5.8	Crosscorrelation	191
	5.9	Preliminary Interpretation	193
	5.10	Frequency Attenuation	197
	5.11	Data Calibration and Differencing	199
	5.12	Cross Equalization Processing	201
	5.13	Introduction to the Cross Equalization Process	201
	5.14	Cross Equalization of Time-lapse Seismic Data	203
	5.15	Cross Equalization Results	205
	5 15	1 Time and Phase Matching	206

	5.15.2		Spectral Balancing	214
	5.15	5.3	Amplitude Matching	218
	5.16	Sum	mary of the Cross Equalization Process	221
6	Time	e-lap	se Seismic Inversion	223
	6.1	Intro	oduction	223
	6.2	Gen	eral Seismic Inversion Methods	225
	6.3	AVC	Inversion Theory	230
	6.4	Fatt	i Modification of Aki-Richard's Equation	230
	6.4.	1	Fatti Modification of Aki-Richard's Equation	233
	6.4.2	2	Convolution as a Matrix Multiplication	233
	6.4.3	3	Final Inversion Formula Form	234
	6.5	Wav	elet Extraction	238
	6.6	Initi	al Model Building	241
	6.7	Initi	al Model Geometry	241
	6.8	Wel	l Data	242
	6.8.2	1	Well Data Lateral Interpolation	242
	6.8.2	2	Well Data Vertical Extrapolation	242
	6.8.3	3	Initial Model Layering	242
	6.8.4	4	Initial Model Parameters Summary	243
	6.9	Inve	rsion Parameters Optimization	243
	6.9.	1	Wavelets Set	243
	6.9.2	2	Constraining Relationships	244
	6.9.3	3	Pre-whitening Method	245
	6.9.4	4	Scalars	246
	6.9.	5	Inversion Sensitivities	247
	6.9.	6	Loading Horizon	250
7	Resu	ults a	nd Discussion	252
	7.1	Wel	l and Seismic Correlation	252

	7.1.	1 Check-Shot Correction	253
	7.1.	2 Statistical Wavelet Extraction	254
	7.1.	3 Deterministic Wavelet Extraction	258
	7.2	Seismic Inversion Output	260
	7.3	Attribute Analysis for inversion results	269
	7.3.	1 Difference in NRMS	269
8	Sum	nmaries, conclusion and recommendation	283
	8.1	Summaries	283
	8.2	Conclusions	284

List of Figures

Figure 1: A schematic representation of physical principles of time-lapse seismic. In
the base line survey (left), the contrast of elastic properties, Vp, Vs (compressional
and shear wave velocity) and _ (density), between the reservoir and the over and
underburden (shown in gray) create reflection events, which are recorded by on
seismic trace (shown in blue) 4
Figure 2: This schematic diagram shows the relationship between seismic, the
geological model and the reservoir model11
Figure 3: West-east cross section across the northern part of Gannet C showing pre-
production fluid distribution in the Forties and approximate salt structure. The Figure
depths in feet (after Staples et al., 2006)13
Figure 4: Interpreting contacts on pseudo-impedance difference cubes. The upper two
sections represent incremental time-steps, whilst the lowest one represents the whole
time period (after Staples et al., 2006)14
Figure 5: Oil-water contact assumptions compared before and after 4D seismic (after
Staples et al., 2006)15
Figure 6: The main 4D hardening signal is shown for '98-'93 around the field (after
Kloosterman et al., 2003)15
Figure 7: A comparison '98-'93 difference seismic (upper panel), simulation
saturations from '98 (middle panel), and the corresponding simulator difference
synthetic ('98-'93) during seismic history matching. In this case,17
Figure 8: Differences in AI signaled localized water encroachment through a leaking
barrier and caused the operator to redesign the proposed horizontal well. The original
well plan (black) was too close to the water. The revised well plan (gray) will add to
the reservoir's productive life (after Boutte, 2007)18
Figure 9:.Time-lapse (4D) monitoring helps identify changes in water saturation
indicated by increases in acoustic impedance that signify encroaching water levels or
injection water breakthroughs (after Boutte et al., 2007)19
Figure 10: Geographical distribution of current 4D seismic activity (after Lumely et
al., 2001)21
Figure 11: A cartoon of reservoir compaction-related effects (courtesy of
westerngeco)22
Figure 12: Subsidence at the Ekofisk platform24
Figure 13: Localized deformation in a well damaged in the overburden at Wilmington
Field, CA, USA showing approximately 10" lateral offset on 10 ^{3/4} " casing over a 5 ft
interval. (after Bruno 2002)25

Figure 14: Casing damage scenarios inside a compacting reservoir (after Veeken et al., 1994)27
Figure 15: Inline and crossline sections through the time-strain volume viewed from
the southeast. The blue geobody is an area of high dilation above well A5 (JAMES
RICKETT et al., 2007)29
Figure 16: Amplitude extraction along the N1 horizon. The high-dilation geobody
from (Figure 7) is visible. It correlates very well with seismic amplitudes except at
the very north (after JAMES RICKETT et al., 2007). ————————————————————————————————————
Figure 17: InSAR measurements over Lost Hills Reservoir California, showing
changes composed primarily of vertical surface subsidence. Purple indicates no
change and the brightest red indicates the highest subsidence levels (white areas are
where the radar measurements were unobtainable, mostly in agricultural fields where
surface disruption (such as ploughing) alters radar properties). Source: NASA/JPL-
Caltec, Producer ID:MRPS9747831
Figure 18: The work flow for inverting for reservoir pressure from time-lapse time strains as outlined in this thesis35
Figure 19: The number of abstracts published at the EAGE and SEG annual
conferences that on the topic of using time-lapse seismic to monitor compacting
reservoirs40
Figure 20: Subsidence and compaction: (a) idealised model and (b) cartoon of
realistic behaviour (after Setarri et al., 2002). ——————44
Figure 21: Vertical stress path around a disk-shaped reservoir in a half space for a
range of reservoir depths and radii. The properties of the half space are found in Table
2. The depths and radii are 1000 m, 2000 m and 4000 m. See Equation 3 for definition
of γ_{v}
Figure 22: Horizontal stress path around a disk-shaped reservoir in a half space for a
range of reservoir depths and radii. The properties of the half space are found in Table
2.2.1. The depths and radii are 1000m, 2000m and 4000m. See Equation 3 for
definition of γr
Figure 23: (a) Predicted and (b) observed time-lapse time-shifts at top reservoir50
Figure 24: (a) Predicted and (b) observed time-lapse changes in shear-wave splitting
in the shallow overburden at Valhall (after Herwanger et al., (2007)). Arrows
represent the polorization and magnitude (travel time delay between the fast (S1) and
slow (S2) shearwaves) of the splitting. In (a) the blue colours show the observed
magnitude of subsidence52
Figure 25: Schematic illustration of the effect of core damage62
Figure 26: Stress path effects on Berea sandstone. (a) A triaxial stress path, (b)
uniaxial stress path63
Figure 27: Stress-sensitivity derived directly from the 4D seismic at the Schiehallion
Field70

Figure 28: Satellite image of the Nile Delta showing the location of the WDDM
Concession and the study area. Image source: Google Maps (2012)74
Figure 29: Nile Delta hydrocarbon occurrence map, modified from Google Earth. 75
Figure 30: Location of four assessment units in the Nile Delta Basin Province in the
eastern Mediterranean. (Map is not definitive for political boundaries) (Kirschbaum,
2010)78
Figure 31: average absolute amplitude multiplied by isochron map for the West Delta
Deep Marine Concession channels (after Andy et al., 2003)79
Figure 32: Schematic showing the approximate location of field in the WDDM (BG
Group, 2009)80
Figure 33: Tectonic regions of the Nile Delta. Modified from Aal et al. (2001)81
Figure 34: The faults, anticlines, and convergence arcs are compiled by Abd-Allah
(2008)84
Figure 35: Nile Delta stratigraphic column and hydrocarbon system, modified from
Rio et al., 1991)88
Figure 36: Messinian isopach map showing significant offshore thickening89
Figure 37: Cross section through the onshore Baltim Canyon showing the sequence
stratigraphic framework of the Abu Madi Formation. Diagram from Salem et al.
(2005)89
Figure 38: Backstepping trangressive sequences within the Abu Madi Formation.
Diagram modified from Roveri & R (2006) with the additional information on
Messinian fields from Rizzini (1978)90
Figure 39: (a) Location map (modified from Samuel et al., 2003) and (b) schematic
cross section (modified from Aal et al., 2006, courtesy of Geo Arabia)92
Figure 40: Biogenic/Thermogenic gas ratio with depth (after, Hemdan and
McQuilken, 2013)96
Figure 41: Nile Delta schematic cross-section for HC migration (after, Hemdan and
McQuilken, 2013)97
Figure 42: Windowed maximum magnitude map showing the geometry of laterally
amalgamated channels, (after, Cross, et al., 2009) 101
Figure 43: Windowed maximum magnitude map and line interpretation showing
well-developed sinuous channel elements within stage III of the channel fill (after
Cross et al., 2009) 102
Figure 44:Windowed maximum magnitude map and corresponding cross section of
a lateral crevasse splay associated with spillover from a sinuous channel element
within stage III of the channel fill (After Cross et al., . 2009) 103
Figure 45: Windowed maximum magnitude map and corresponding cross sections
showing the lateral swing of meander loops of dominantly aggradational (emphasized
by the arrows) sinuous channel elements (After Cross, et al., 2009) 103

Figure 46: Composite illustration depicting the complexity shown by channels with
frontal splays that make up much of stage IV. (after Cross et al . 2009) 104
Figure 47: Windowed maximum magnitude map and corresponding cross section of
a narrow mud-filled channel with apparently sand-prone (high amplitude) levees.
(after Cross et al., 2009) 105
Figure 48: Windowed maximum magnitude showing prograding lobate sheets that
are fed by low-sinuosity channels within stage VI of the channel system (after Cross
et al., 2009) 107
Figure 49: Series of schematic block diagrams that summarize the depositional
evolution of the channel system. (after Cross et al., 2009) 108
Figure 50: Schematic cross section illustrating traps and play types recognized in the
study area (modified from RWE Dea; Vandré, 2007) 109
Figure 51: Seismic line taken down the length of the Scarab Saffron field for 12.5 km
showing the Nile delta offshore anticline111
Figure 52: Bathymetric map of the eastern Mediterranean region and index map
showing the location of the Simian Field in West Delta Deep Marine concession,
offshore Nile Delta, Egypt. (modified from CCGM/CMGW) 114
Figure 53: Chrono-stratigraphy of the offshore Nile Delta 115
Figure 54: An amplitude slice is shown on the left extracted from ~ 13 m below the
top of the Simian channel117
Figure 55: Series of interpreted seismic cross-sections, locations are shown on the far
right image of Figure 55 117
Figure 56: Schematic diagram shows the evolution of the simian channel 119
Figure 57: Average Magnitude map of the Simian Field, showing drilled wells. The
insets show maps and seismic lines that highlight the differences in channel
architecture between the southern (more confined complexes) and the northern (less
confined, more bifurcated complexes) 121
Figure 58: Average Magnitude map of the Simian field, showing the well locations
and the different parts/regions of the field 122
Figure 59: MDT Points showing possible pressure depletion in the deeper sands 123
Figure 60: Schematic diagram for south-north cross-section for the Simian Field 124
Figure 61: Average magnitude map of the filed, showing the connectivity along the
channel and seismic lines that highlight this connectivity 125
Figure 62: Full stack seismic inline 3645, showing the Simian-Di nuclear magnetic
facies log and the interpreted seismic horizons (Top Channel orange/yellow), Base
Gas (green) and the Base Channel (black)). Inset (top right) is the Top Channel TWT
map127
Figure 63: Images (AAA map and seismic cross-sections) showing the two main
faults (in terms of potential compartmentalization) in Simian field; the Dm-Db fault
(bottom right) and the NW Sheet fault (top right) 129