بسم الله الرحمان الرحيم

"إِنْمَا يَخْشَى الله مِنْ عِبَادِهِ الْعُلَمَاءِ"

صدق الله العظيم

سورة فاطر: آية ۲۸

THE ASSESSMENT OF OSTEOPONTIN LEVEL IN GINGIVAL CREVICULAR FLUID IN PATIENT WITH PERIODONTAL DISEASE

Thesis

Submitted For Partial Fulfillment of the Requirement of Master Degree

IN
Oral Medicine and Periodontology

By
Marwa Mohamed Tawfiq Ali Abd –Al Qader

B.D.S.

(October 6 University)

Oral Medicine and Periodontology Department Faculty of Oral and Dental Medicine Cairo University

(2010)

Supervisors

Professor Dr. Mahmoud Ibrahim El-Refaie Professor of Oral medicine and Periodontology Chairman of Oral medicine, Periodontology and Diagnosis Department Faculty of Oral and Dental medicine Cairo University

Professor Dr. Azza Ezz-El Arab
Professor of Oral medicine and Periodontology
Vice dean for post graduate studies
Faculty of Oral and Dental medicine
Cairo University

Dr. Gehan Gharib Madkour

Lecturer of Oral medicine and Periodontology Faculty of Oral and Dental medicine Cairo University

Heknowledgement

First of all Thanks to God Almighty whose power and blessings initiate all the good things within us and motivates our will to do the best for mankind.

I would like to express my deep gratitude and appreciation to my supervisior Professor Dr. Mahmoud Ibrahim El Refaie Professor of Oral Medicine and Periodontology, Cairo University and Chairman of Oral Medicine, periodontology, and diagnosis department Cairo University. Whose supervision on my thesis is a great honour to me. It is not possible to summarize his remarkable influence on my entire career in one paragraph. Without his support and his guidance this work would not have been possible. He was always accessible, willing to help me, giving generously his valuable time so, research life became smooth and rewarding for me.

Of course it's necessary to express my sincere gratitude to Professor Dr. Hzza Ezz El-Hrab. Professor of Oral Medicine and Periodontology, Cairo University, who introduced me to the field of oral medicine and Periodontology, gave me important guidance during my first steps in this career and up till now, I will never find the words to thank her for the precious time she gave me, untiring help during my difficult moments. She has supported me in hundreds of ways

throughout the development and writing of this work and she is the most balanced and well-adjusted person I have ever known

Most sincere thanks to **Dr. Gehan Gharib Madkour** Lecturer of oral medicine and peiodontology, Faculty of Oral and Dental medicine, Cairo University for her assistance, advice and friendly help in this study.

My great thanks and appreciation to **Dr. Hoda Mostafa Yasin**, medical specialist in clinical pathology department, Faculty of Medicine, Cairo University for her great help and continuous support throughout the study.

I couldn't forget to express my appreciation to all the staff members of the Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University specially **Dr. Noha Ghalab** and **Dr. Ahmed El Barbary** for their highly cooperation.

Hiso I warmly like to express my deepest appreciation to all the staff members of the Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, October 6 University specially to Dr. Hala Yassin, Dr. Hmr El Kholy and Dr. Sahar Hold El Raaouf for their lovely, great, closed and unlimited help

Dedication

My greatest Parents And Brothers

Index

Content

Page

Introduction	1
Review of literature	4
Aim of the study	35
Materials and Methods	36
Results	51
Discussion	68
Summary	75
Conclusions	77
Recommendations	78
References	79
Arabic summary	

List of abbreviations

ABL	Alveolar bone loss
ALP	Alkaline phosphatase
BD	Bone density
BSP	Bone sialoprotein
CAL	Clinical attachment loss
ECM	Extracellular matrix
Eta 1	Early T-cell activation gene -1
FMLP	Formly –peptide
GAP	Generalized aggressive periodontitis
GCF	Gingival crevicular fluid
ICTP	Pyridinoline cross linked carboxy
	terminal telepeptide of type 1 collagen
IL	Interleukin
ΙΝΕγ	Interferon gamma
INOS	Inducible nitric oxide synthase
LAP	Localized aggressive periodontitis
LPS	lipopolysacchrides
MMP	
	Matrix metalloproteinase
mRNA	Messenger Ribonucleic acid
NK	Natural killer
NO	Nitric oxide
OCN	Osteocalcin
ON	Osteonectin
OPG	Osteoprotegrin
OPN	Osteopontin
PBMCS	Peripheral blood mononuclear cells
PDGF	platelets derived growth factor
PGE2	Prostaglandin E2
PL	Periodontal ligament
PPD	Probing pocket depth
RGD	Argnine-glycine-aspartic acid
	(one letter code for Arg-Gly-Asp)
SIBLING	Small integrin –binding ligand N-linked
	glycoproteins
SVVYGLYR	Serine-Valine –valine –tyrosin-glycine-
	leucine-arginine
TGFβ	Transforming growth factor_ beta
TNFα	Tumor necrosis factor – alpha
TRAP	tartrate-resistant acid phosphatase

List of Tables

Table No.	Title	Page
1	Comparison in plaque index between	<i>7.</i> 4
1	the two groups	54
2	Comparison in gingival index	E E
2	between the two groups	55
	Comparison in probing depth	
3	between the two groups	56
	Comparison in clinical attachment	
4	level (CAL) between the two groups	57
_	Comparison in bone density	~ 0
5	between the two groups	58
6	Comparison between Osteopontin	
	levels in the three groups	60
7	Correlation between Osteopontin	
	level (OPN) and Other parameters	62
	among aggressive periodontitis	
	group.	
8	Correlation between Osteopontin	
	level (OPN) and other parameters	65
	among chronic periodontitis group.	

List of Figures

Figure No.	Title	Pag e
1	Simplified schema indicating various important biological functions of OPN	28
2	The processing software of the Digora system	39
3	One of the lines drawn during densitometric analysis using Digora software	40
4	Collection of GCF	41
5	Placement of filter paper inside sterile tube	42
6	Centrifuge for centrifugal filtration of GCF from the filter paper	43
7	Reagent preparation	45
8	OPN microplate 96 well polystyrene microplate	47
9	ELIZA reader	47

10	Radiographic examination in aggressive periodontitis patient	49
11	Probing depth at the most affected site and filter paper placement into the pocket in aggressive periodontitis patient	49
12	Radiographic examination in chronic periodontitis patient	50
13	Probing depth at the most affected site and filter paper placement into the pocket depth in chronic periodontitis patient	50
14	Pie charting showing male to female ratio (all patients)	52
15	Pie charting showing male to female ratio in healthy group	52
16	Pie charting showing male to female ratio in aggressive periodontitis group	53

17	Pie charting showing male to female ratio in chronic periodontitis group	53
18	The mean plaque index (PI) in aggressive periodontitis and chronic periodontitis group	54
19	The mean gingival index(GI) in aggressive periodontitis and chronic periodontitis group	55
20	The mean probing pocket depth(PD) in the two groups	56
21	The mean clinical attachment level (CAL) in the two groups	57
22	The mean bone density (BD) in the two groups	58
23	The mean Osteopontin (OPN) level in the three groups	60
24	Correlation between osteopontin(OPN) level and pocket probing depth(PD) in the aggressive periodontitis group	62

25	Correlation between osteopontin (OPN) level and clinical attachment level (CAL) in aggressive periodontitis group	63
26	Correlation between osteopontin (OPN) level and bone density (BD) in the aggressive periodontitis group	63
27	Correlation between osteopontin(OPN) level and Plaque index (PI) among aggressive periodontitis group	64
28	Correlation between osteopontin(OPN) level and gingival index (GI)among aggressive periodontitis group	64
29	Correlation between osteopontin(OPN) level and probing pocket depth(PD) in chronic periodontitis group	65
30	Correlation between osteopontin (OPN) level and clinical attachment level (CAL) in chronic periodontitis group	66

31	Correlation between osteopontin(OPN) level and bone density(BD) in the chronic group	66
32	Correlation between osteopontin (OPN) level and plaque index (PI) among chronic periodontitis group	67
33	Correlation between (OPN) level and gingival Index (GI) among chronic periodontitis group	67

Introduction

Periodontal disease which is marked by inflammation may result in subsequent loss and / or damage to tooth, supporting tissue including bone, cementum and periodontal ligament. (polson and caton 1982). It is widely accepted that periodontal pathogens are accused for the initiation and sustenance of the inflammatory process in periodontal disease which is crucial for the destruction of mineralized and non-mineralized extracellular matrices in periodontal tissues (page 1991). Bacterial plaque products induce the differentiation of bone progenitor cells into osteoclasts and several host factors released by inflammatory cells are capable of inducing bone resorption in vitro and can play a role in periodontal disease (Schwartz et al., 1997). These mediators are interleukin – 1, (1L-1) tumor necrosis factor – alpha, IL – 6 and prostaglandinE2 (PGE2) (Munday 1991) and some that are involved in inhibiting bone resorption like osteoprotegrin (Mc Cauley and Nohuch 2002).

The national institute of dental and craniofacial research performed concentrated research in salivary diagnostics, significant advancements have been achieved within the past 10 years using saliva, gingival crevicular fluid (GCF) and mucosal transudate as biological samples for the detection of oral and systemic illnesses (*Streckfus and Bigler 2002*). Salivary secretions are easily collected and containing local and systemic – derived biomarkers of periodontal disease (*Mandel 1993*).

Biomarkers of bone resorption or turnover include several biomarkers such as alkaline phosphatase (ALP) which is a catalyzing enzyme and its