

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

The USE OF RADIATION GRAFT COPOLYMERS IN SOME INDUSTRIAL WASTES 8 4 869

A Thesis
Submitted to
University Collage for Girls
Ain Shams University

By **Ghada Adel Mahmoud**

For The Degree of Ph.D. in Chemistry

National Center for Radiation Research and Technology
Atomic Energy Authority
2001

The Use of Radiation Graft Copolymers in Some Industrial Wastes

Supervisors

Approved

Prof. Dr. Abo El-Khair B. Mostafa

Professor of Physical Chemistry Deputy University Collage for Girls Ain Shams University

Prof. Dr. El-Sayed A. Hegazy

Professor of Radiation Chemistry Chairman of Industrial Irradiation Division National Center for Radiation Research and Technology - Atomic Energy Authority

Dr. Hanaa K. Mohamed

Ass. Professor of Radiation Chemistry Polymer Chemistry Department National Center for Radiation Research and Technology - Atomic Energy Authority 14-Khour

E.A. Hagiry

H. Kamal

Acknowledgment

ACKNOWLEDGEMENT

First of all, thanks to God for the in finite helps and persistent supply with patience and efforts to accomplish this work successfully.

The author would like Co express her gratitude to **Prof. Dr. Abo. EI-Khair B. Mostafa** (Prof. of Polymer Chemistry Deputy University Collage for girls Ain Shams University) for his sponsorship, valuable advice and fruitful discussion throughout this work.

She is cordially indebted of **Prof Dr. EI-Sayed A. Hegazy** (Prof. of Radiation Chemistry Deputy Chairman, Industrial Irradiation Division, National Center for Radiation Research and Technology-Atomic Energy Authority) for his close supervision and for suggesting the topics of this work, fruitful guidance and helpful discussions. The support given by him was indispensable to the completion of this work.

Deepest thanks and sincere gratitude are to **Dr. Hanaa K. Mohamed** (Ass. Prof. of Radiation Chemistry, Polymer Chemistry Department, National Cetner for Radiation Research and Technology-Atomic Energy Authority) for her keen supervision, generous guidance, scientific and practical support throughout this work.

Many thanks are also for all the staff members and colleagues of National Center for Radiation Research and Technology-Atomic Energy Authority, for their interest and facilities provided throughout this work.

Contents

CONTENTS

	Page
List of Figures	
List of Tables	
Abstract	i
Aim of the Work	ii
CHAPTER I	
INTRODUCTION	
	_
I.1. Radiation - Induced Grafting	1
I.2. Factors Affecting Radiation Grafting	3
I.2.1 Monomer Concentration	3
I.2.2. Deactivation	4
I.2.3. Cross-Linker	4
I.2.4. Influence of Dose and Dose Rate	5
I.3. Applications	5
I.3.1. Reverse Osmosis	5
I.3.2. Ultra-filtration	6
I.3.2.1. Biological Product	6
I.3.2.2. Food and Beverage Products	7
I.3.2.3. Waste Treatment	7
I.3.3. Dialysis	7
I.3.4. Gas Separation	8
I.3.5. Micro-filtration	9
I.3.5.1. Dyes	9
I.3.5.2. Metal ions	11
CHAPTER II	
LITERATURE SURVEY	
RADIATION- INDUCED GRAFT POLYMERIZATION	13
II.1. Methyl Methacrylate (MMA)	13
	17
II.2. 4-Vinyl Pyridine (4-VP)	
II.3. Styrene (Sty)	21

II.4. Acrylonitrile (AN)	32
II.5. Vinyl Acetate (VAc)	34
II.6. Other Monomer Systems	36
II.O. Other Monomer Systems	
CHAPTER III	
EXPERIENTAL	
III.1. MATERIALS	51
III.1.1. Polymer Substrate	51
III.1.2. Monomers	51
III.1.3. Chemicals	51
III.2. APPARATUS AND METHODS	51
III.2.1. Gamma Radiation Source	51
	52
III.2.2. Graft Copolymerization	52
III.2.3. Sulfonation of the Grafted Films III.2.4. Alkaline Treatment of the Grafted Films	53
	53
III.2.5. Quaternization of the Grafted Films	53
III.2.6 Swelling Measurements	54
III.2.7. Mechanical Properties Measurements	54
III.2.8. (FTIR) Measurements	55 55
III.2.9. Scanning Electron Microscope (SEM)	55 55
III.2.10. Thermal Analysis	
III.2.10.1. Thermal Gravimetric Analysis (TGA)	55 55
III.2.10.2.Differential Scanning Calorimetery (DSC)	55
III.2.1.1. Metal Uptake Measurements	55 53
III.2.12. Dye Uptake Measurements	57
CHAPTER IV	
RESULT AND DISCUSSION	
RESULT AND DISCUSSION	
IV.1. INTRODUCTION	59
IV.2. RADIATION INDUCED GRAFT COPOLYMERI-	
ZATION OF (MMA/Vac) (Sty/VAc) AND 4-VP	60
IV.2.1. Effect of Solvent	60
IV.2.2. Effect of Additives	62