

# 





ثبكة المعلومات الجامعية





### جامعة عين شمس

التوثيق الالكتروني والميكروفيلم



نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات



يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %



ثبكة المعلومات الجامعية







## DETECTION AND CLASSIFICATION OF SLEEP APNEA SYNDROME USING ADAPTIVE FUZZY LOGIC SCREENING SYSTEM

by

Khaled Mohamed Sayed Mohamed Ali AlAshmouny

Approved the state of the state

A Thesis Submitted to the Faculty of Engineering at Cairo
Jniversity in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF SCIENCE

in

SYSTEMS AND BIOMEDICAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
February 2006

199

### DETECTION AND CLASSIFICATION OF SLEEP APNEA SYNDROME USING ADAPTIVE FUZZY LOGIC SCREENING SYSTEM

by

#### Khaled Mohamed Sayed Mohamed Ali AlAshmouny

A Thesis Submitted to the Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

in

#### SYSTEMS AND BIOMEDICAL ENGINEERING

#### Supervised by

Prof. Mohamed Emad Rasmy

Professor of Systems and Biomedical Engineering, Cairo University Dr. Ahmed Abdelaal Morsy

Assistant Professor of Systems and Biomedical Engineering,

Cairo University

Dr. Shahira Fathy Loza

Assistant Professor of Sleep Medicine, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
February 2006

### DETECTION AND CLASSIFICATION OF SLEEP APNEA SYNDROME USING ADAPTIVE FUZZY LOGIC SCREENING SYSTEM

by

Khaled Mohamed Sayed Mohamed Ali AlAshmouny

A Thesis Submitted to the Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

in

SYSTEMS AND BIOMEDICAL ENGINEERING

| Approved by the Examination Committee:        |
|-----------------------------------------------|
| Prof. Mohamed Emad Rasmy, Thesis Main Advisor |
| Prof. Abdullah Sayed Ahmed, Member            |
| Prof. Samia Abdelrazik Mashali, Member        |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
February 2006

#### TABLE OF CONTENTS

|          |                                                    | Page |
|----------|----------------------------------------------------|------|
| LIST OF  | FIGURES                                            | vii  |
| LIST OF  | TABLES                                             | x    |
| LIST OF  | SYMBOLS AND ABREVIATIONS                           | хi   |
|          | LEDGEMENT                                          | X1.  |
|          |                                                    | XV   |
| ABSTRA   | ACT                                                | xvi  |
| 1. INTRO | ODUCTION                                           | 1    |
| 1.1.     | INTRODUCTION TO SLEEP                              | 1    |
| 1.1.1.   | Historical Perceptions of Sleep                    | 1    |
| 1.1.2.   | Behavioral Definitions of Sleep                    | 1    |
| 1.1.3.   | Function of Sleep                                  | 2    |
| 1.1.4.   | History of Sleep Physiology                        | 2    |
| 1.1.5.   | How Much Sleep Do We Need?                         | 3    |
| 1.1.6.   | What Does Sleep Do For Us?                         | 5    |
| 1.2.     | SLEEP MEDICINE AND DISORDERS                       | 6    |
| 1.2.1.   | In Egypt, A Sleep Expert Viewpoint                 | 6    |
| 1.3.     | TYPES OF SLEEP - SLEEP STAGES                      | 9    |
| 1.3.1.   | Sleep Organisation And The Hypnogram               | 9    |
| 1.3.2.   | Sleep Stages                                       | 9    |
| 1.3.3.   | The Occurrence of Sleep-Disordered Breathing among |      |
|          | Middle-Aged Adults                                 | 14   |
| 1.4.     | SLEEP APNEA-HYPOPNEA SYNDROME                      |      |
|          | (SAHS)                                             | 15   |
| 1.4.1.   | Types of Sleep Apnea                               | 15   |
| 1.4.2.   | Prevalence of Sleep Apnea                          | 16   |
| 1.4.3.   | Symptoms of Sleep Apnea                            | 16   |
| 1.4.4.   | Causes of Sleep Apnea                              | 17   |
| 1.4.5.   | How serious is Sleep Apnea?                        | . 19 |
| 1.5.     | DIAGNOSIS OF SLEEP APNEA                           | 24   |

|    | 1.5.1.       | Polysomnography: Overview and Clinical Application | 24 |
|----|--------------|----------------------------------------------------|----|
|    | 1.5.2.       | Simplifying the Diagnosis of Sleep Apnea           | 28 |
|    | 1.6.         | TREATMENT OF SLEEP APNEA                           | 30 |
|    | 1.7.         | ORGANIZATION OF THIS THESIS                        | 32 |
| 2. | . REVIE      | W OF LITERATURE                                    | 33 |
|    | 2.1.         | OVERVEIW                                           | 33 |
|    | 2.2.         | STUDIES BASED ON PATTERN                           | 33 |
|    | And 6 And 6  | CLASSIFICATION METHODS                             | 22 |
|    | 2.3.         | DETECTION USING NASAL PRESSURE                     | 33 |
|    | 2.4.         | DETECTION USING OTHER PULMONARY                    | 36 |
|    | 2. <b>4.</b> | FUNCTIONS                                          |    |
|    | 2.5          |                                                    | 38 |
|    | 2.5.         | DETECTION USING                                    |    |
|    | 2.6          | ELECTROCARDIOGRAM                                  | 39 |
|    | 2.6.         | DETECTION BASED ON PULSE OXIMETRY                  | 44 |
|    | 2.7.         | DETECTION USING TIME SERIES                        |    |
|    |              | ANALYSIS AND FORCED OSCILLATION                    |    |
|    |              | TECHNIQUE                                          | 46 |
|    | 2.8.         | IMAGE PROCESSING APPROACHES FOR                    |    |
|    |              | DETECTION AND CLASSIFICATION                       | 47 |
|    | 2.9.         | CLASSIFICATION USING PULSE TRANSIT                 |    |
|    |              | TIME                                               | 49 |
|    | 2.10.        | DETECTION BY MODELING OF                           |    |
|    |              | RESPIRATORY TRACT AND FACIAL                       |    |
|    |              | ANATOMY                                            | 50 |
|    | 2.11.        | OTHERS                                             | 52 |
|    | 2.12.        | PORTABLE RECORDINGS AND SCREENING                  |    |
|    |              | SYSTEMS                                            | 52 |

| 3. ALG | ORITHM METHODOLOGY                                     | 5′  |
|--------|--------------------------------------------------------|-----|
| 3.1.   | OVERVIEW                                               | 5'  |
| 3.2.   | MATERIALS AND METHODS                                  | 59  |
| 3.2.1. | Fuzzy Algorithm Development                            | 60  |
| 3.2.2. | Postprocessing                                         | 62  |
| 3.2.3. | Center of Gravity Calculation                          | 64  |
| 3.2.4. | Clustering Engine and classification of not-sure event | 64  |
| 3.2.5. | Classification Algorithm for Abnormal Events           | 65  |
| 3.3.   | CLINICAL EVALUATION                                    | 68  |
| 3.4.   | RESULTS                                                | 69  |
| 3.5.   | DISCUSSION                                             | 70  |
| 3.6.   | CONCLUSIONS                                            | 79  |
| 4. HÁR | DWARE METHODOLOGY                                      | 81  |
| 4.1.   | OVERVIEW                                               | 81  |
| 4.2.   | HARDWARE ARCHITECTURE AND DESIGN                       | 83  |
| 4.2.1. | Architecture Review                                    | 83  |
| 4.2.2. | Hardware Design                                        | 87  |
| 4.3.   | HARDWARE PERFORMANCE                                   | 129 |
| 4.3.1. | Standards Conformity and Precautions                   | 129 |
| 4.3.2. | Simulation, Testing, and Clinical Evaluation           | 132 |
| 4.4.   | RESULTS                                                | 133 |
| 4.4.1. | Schematic and Circuit Diagrams.                        | 133 |
| 4.4.2. | Layout and Physical Partitioning                       | 136 |
| 4.4.3. | FPGA Simulation and Synthesis                          | 137 |
| 4.5.   | DISCUSSION                                             | 140 |
| 4.6.   | CONCLUSIONS                                            | 142 |
| 5.CON  | CLUSION, AND RECOMMENDATIONS                           |     |
|        | UTURE RESEARCHES                                       | 143 |
|        |                                                        |     |

| 5.  | 1. CONCLUSIONS                                                  | 143 |
|-----|-----------------------------------------------------------------|-----|
| 5.  | 2. RECOMMENDATIONS FOR FUTURE                                   |     |
|     | RESEARCHES                                                      | 145 |
| REI | FERENCES                                                        | 147 |
| API | PENDICES                                                        | 161 |
| A   | . Ahmed A. Morsy, Khaled M. Al-Ashmouny, Sleep Apnea            |     |
|     | Detection Using an Adaptive Fuzzy Logic Based Screening System, |     |
|     | IEEE EMBS September 1-4, 2005 Shanghai, China                   | 161 |
| В   | . Khaled M. Al-Ashmouny, Ahmed A. Morsy, Shahira F. Loza,       |     |
|     | Sleep Apnea Detection and Classification Using Fuzzy Logic:     |     |
|     | Clinical Evaluation, IEEE EMBS September 1-4, 2005 Shanghai,    |     |
|     | China                                                           | 165 |
| C   | C. Forced Oscillation Technique                                 | 169 |
| a   | ). Hardware Component list                                      | 173 |

#### LIST OF FIGURES

| FIGURE       | DESCRIPTION                                                                              | PAGE |
|--------------|------------------------------------------------------------------------------------------|------|
| Figure 1.1.  | Typical hypnogram from a healthy young subject                                           | 9    |
| Figure 1.2.  | A 24-year-old woman with facial abnormalities that contribute to obstructive sleep apnea | 18   |
| Figure 1.3.  | Sample of Polysomnography showing an apnea event                                         | 26   |
| Figure 1.4.  | Examples of CPAP Interfaces                                                              | 30   |
| Figure 2.1.  | Experimental system using Image Processing                                               | 47   |
| Figure 2.2.  | Visualization and ROI Selection in the Air Flow Region                                   |      |
|              | for Inspiration and Expiration                                                           | 49   |
| Figure 2.3.  | Inflatable Air Mattress                                                                  | 50   |
| Figure 3.1.  | System Block Diagram                                                                     | 59   |
| Figure 3.2.  | Input/Output Membership Functions                                                        | 60   |
| Figure 3.3.  | Rule Viewer                                                                              | 61   |
| Figure 3.4.  | Surface Viewer                                                                           | 61   |
| Figure 3.5.  | Post-processing                                                                          | 62   |
| Figure 3.6.  | Center of Gravity Detection Engine (2 <sup>nd</sup> )                                    | 65   |
| Figure 3.7.  | Classification Engine (3 <sup>rd</sup> )                                                 | 67   |
| Figure 3.8.  | Graphical comparison between Alice and FLADA                                             | 71-3 |
| Figure 3.9.  | "FLADA Outperforms Alice?" for Detection                                                 | 77   |
| Figure 3.10. | "FLADA Outperforms Alice?" for Overall Classification                                    | 78   |
| Figure 4.1.  | Hardware Requirement                                                                     | 83   |
| Figure 4.2.  | Functional Partitioning                                                                  | 85   |
| Figure 4.3.  | Physical Partitioning for Power Supply                                                   | 85   |
| Figure 4.4.  | Physical Partitioning for other Components                                               | 86   |
| Figure 4.5.  | Overall System Flow                                                                      | 86   |
| Figure 4.6.  | Hardware System Block Diagram                                                            | 87   |
| Figure 4.7.  | Thermistor Sensor                                                                        | 88   |
| Figure 4.8.  | Piezo-electric Sensor                                                                    | 89   |
| Figure 4.9.  | Instrumentation Amplifier INA326                                                         | 90   |
| Figure 4.10. | Band-pass Filter using TLV2764                                                           | 92   |
| Figure 4.11. | Serial 8-bit Analog-to-Digital Converter                                                 | 94   |
| Figure 4.12. | ADC Data Flow                                                                            | 96   |
| Figure 4.13. | Analog Power Supply                                                                      | 97   |

|              | Distant Cimonitate                                  | 99  |
|--------------|-----------------------------------------------------|-----|
| Figure 4.14. | Digital Circuitry                                   | 101 |
| Figure 4.15. | FPGA Connections and Ports                          | 102 |
| Figure 4.16. | Platform Configuration PROM                         | 103 |
| Figure 4.17. | Serial EEPROM                                       | 103 |
| Figure 4.18. | SecureDigital Memory Card Connections               | 105 |
| Figure 4.19. | Keypad                                              | 105 |
| Figure 4.20. | Indicator "Display"                                 |     |
| Figure 4.21. | Digital Power Supply                                | 106 |
| Figure 4.22. | SD Card Internal Partitioning                       | 108 |
| Figure 4.23. | SD Card Power-up Diagram                            | 110 |
| Figure 4.24. | SD Card State Diagram "Power-up to Stand-by"        | 110 |
| Figure 4.25. | SD Card State Diagram "other states"                | 111 |
| Figure 4.26. | Spartan-3 Pinout                                    | 113 |
| Figure 4.27. | Spartan-3 Internal Construction                     | 114 |
| Figure 4.28. | FPGA Standard Design Flow                           | 115 |
| Figure 4.29. | Block RAM Columns Location                          | 117 |
| Figure 4.30. | Spartan-3 Internally Designed ROM, RAM, and FIFO    | 117 |
| Figure 4.31. | Spartan-3 Internally Designed DCM                   | 119 |
| Figure 4.32. | Operation Management Block Diagram                  | 120 |
| Figure 4.33. | State Machine (0) for Data Acquisition of the Three |     |
| 116010       | Biosignals                                          | 128 |
| Figure 4.34. | Sensor Schematic                                    | 133 |
| Figure 4.35. | Digital Circuitry Schematic                         | 134 |
| Figure 4.36. | 1 Distant Down Supplies Schematics                  | 135 |
| Figure 4.37. | Conton Layout                                       | 136 |
| Figure 4.38. | _ •                                                 | 136 |
| _            |                                                     | 137 |
| Figure 4.39. | a to the same and added FIFO using                  |     |
| Figure 4.40  |                                                     | 137 |
|              | ModelSim                                            |     |

#### LIST OF TABLES

| TABLE      | DESCRIPTION                                       | PAGE       |
|------------|---------------------------------------------------|------------|
| Table 1.1: | Sleep Stages                                      | 13         |
| Table 3.1: | Fuzzy Engine Output and Clustering Engine Results | 70         |
| Table 3.2: | Comparison between "Alice® 4" and FLADA for       |            |
|            | Detection                                         | <b>7</b> 4 |
| Table 3.3: | Comparison between Alice® 4 and FLADA for overall |            |
|            | classification                                    | 75         |
| Table 4.1: | FPGA Synthesis Requirement                        | 138-9      |