

Ain Shams University Faculty of Engineering Mechanical Power Department

Study of the Heat Transfer Characteristics for a Heat Pipe Solar Collector

A ThesisSubmitted in Partial Fulfillment of the Requirements for the Degree ofMaster of Science in Mechanical Engineering

Submitted by

Ahmed Ahmed Hassan Mohamed

BSc. in Mechanical Power Engineering

Ain Shams University, 2010

Supervised by

Prof. Mahmoud Mohamed Abo El-Nasr

Professor in the Mechanical Power Eng. Dept. Faculty of Engineering - Ain Shams University

Dr. Mahmoud Mohamed Kamal

Associate Professor in the Mechanical Power Eng. Dept. Faculty of Engineering - Ain Shams University

Dr. Hany El-Sayed Abd El-Haleim

Assistant Professor in the Mechanical Power Eng. Dept. Faculty of Engineering - Ain Shams University

December 2015

Approval

Name: Ahmed Ahmed Hassan Mohamed **Degree:** Master of Science in Mechanical Engineering **Title:** "Study of the Heat Transfer Characteristics for a Heat Pipe Solar Collector" **Examining Committee:** Title, Name, and Affiliation Signature Prof. Dr. Mahmoud Abdel Fattah Elkady Azhar University, Faculty of Engineering Mechanical Engineering Dept. Dr. GameelWisaYonan Ain Shams University, Faculty of Engineering, Mechanical Engineering Dept. Prof. Dr. Mahmoud Mohamed Abo El-Nasr Ain Shams University, Faculty of Engineering, Mechanical Engineering Dept. Dr. Mahmoud Mohamed Kamal Ain Shams University, Faculty of Engineering, Mechanical Engineering Dept.

Date: 29/12/2015

ETHICS STATEMENT

This dissertation is submitted to Ain Shams University for the

degree of Master of Science in Mechanical Power Engineering.

The work included in this thesis was carried out by the author at

the Mechanical Power Engineering Department, Faculty of

Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification

at any other university or institution.

Name: Ahmed Ahmed Hassan Mohamed

Signature:

Date:

ACKNOLEDGMENT

Praise be to God, Lord of the Worlds, for giving me the guidance, the patience and the strength to accomplish this work.

Foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Mahmoud Abo El-Nasr. I have been amazingly fortunate to have an advisor who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. His continuous support helped me overcome many crisis situations and finish this dissertation successfully.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Mahmoud Kamal and Dr. Hany El-Sayed for their encouragement, advices and insightful comments.

My sincere thanks also go to the laboratory technician/ Amin Abd El-Latif for his support in constructing the test rig and providing me with all the necessary needs.

I am also indebted to Eng. Ahmed Sayed for his continuous support during the whole work, Eng. Mohamed Mohy and Eng. Mohamed Safy for their sincere help with the documentation phase.

Most importantly, none of this would have been possible without the love and encouragement of my family.

ABSTRACT

The purpose of this work is to study experimentally the performance of a heat pipe solar collector under the climatic conditions of Cairo, Egypt. A solar collector consists of four heat pipes with evacuated glass tubes has been designed and installed in an outdoor water heating system. The collector performance is studied during a summer day (5 August 2014) from 8:00 am to 3:00 pm with the collector facing south. The collector tilt angle was 30°, the cooling water flow rate was 0.2 lit/min, and the heat pipe evaporation to adiabatic length ratio (L_e/L_a) was 13.5. It was found that the average heat pipe maximum temperature was 66°C. the maximum useful rate of heat gain was 146 W, and the maximum efficiency reaches 68% at 1:00 pm. The collector overall heat transfer coefficient was found to be about 30 W/m²K, and the optical efficiency was 64.15%. Also the effect of varying the collector tilt angle, the cooling water flow rate, and the evaporation to adiabatic length ratio on the collector performance are studied during different days in the summer season. The results showed that the performance of the collector is the best for the 30° inclination rather than the 45° and 60° inclinations. The optimum water flow rate was found to be 0.2 lit/min, and it was found that increasing the flow rate leads to the decrease of the efficiency.

Finally, the results showed that the collector has the best performance when the (L_e/L_a) is 13.5 and as the length ratio is decreased (by increasing the adiabatic length) the collector efficiency decreases.

Table of Contents

	List	of Fig	ures	i
	List	of Tab	oles	.vi
	List	of Syr	mbols and Abbreviations	viii
C	haptei	r One:	: Introduction	1
	1.1	Solar	Energy	1
	1.1	1.1	Advantages of solar energy	2
	1.1	1.2	Types of solar energy	3
	1.1	1.3	Applications of solar energy	4
	1.2	Solar	Heating Systems	5
	1.2	2.1	Flat plat collectors	5
	1.2	2.2	Evacuated tube collectors	6
	1.3	Heat	Pipes	7
	1.3	3.1	Construction of heat pipes	7
	1.3	3.2	Theory of operation of heat pipes	8
	1.3	3.3	Types of heat pipes	9
	1.3	3.4	Applications of heat pipes	12
	1.3	3.5	Advantages of heat pipes	14
	1.3	3.6	Limitations of using heat pipes	15
	1.4	Thesi	is Outlines	15
C	haptei	r Two	: Literature Review	17
	2.1	Intro	duction	17
	2.2	Expe	rimental Analysis for different collector designs	18
	2.3	Expe	rimental Analysis for varying heat pipe parameters	38

2.4	Conc	cluding Remarks	50
2.5	Scop	e of the present study	51
Chapte	r Thre	ee: Experimental Test Rig	52
3.1	Intro	duction	52
3.2	Test	Rig Configuration	52
3.3	Solar	Collector	55
3.	3.1	Evacuated Tubes	56
3.	3.2	Heat pipes and Heat Transfer Fins	57
3.	3.3	Back Corrugated Plate	58
3.	3.4	Condenser	59
3.	3.5	Collector Holder	60
3.4	Meas	suring Devices	61
3.	4.1	Inlet and Exit Cooling Water Temperatures	61
3.	4.2	Heat Pipes and Back Plate Surface Temperature	s.62
3.	4.3	Digital Controller	64
3.5	Calib	oration	64
3.6	Unce	ertainty of Measurements	65
Chapte	er Fou	r: Experimental Procedures and Calculations	66
4.1	Intro	duction	66
4.2	Expe	rimental Procedures	69
4.3	Solar	Radiation Approximation	70
4.4	Colle	ector Performance Relations	71
4.	4.1	Rate of heat input	72
4.	4.2	Rate of useful heat Gain	72

4.4.3	Collector Efficiency	73
4.5 Anal	lysis for the Collector Heat Losses	74
4.5.1	Plate Heat Losses	74
4.5.2	Evacuated Tubes and Heat Pipes Losses	76
4.5.3	Condenser Losses	78
4.5.4	Exit Water Flow Pipes Losses	79
Chapter Five	e: Results and Discussions	80
5.1 Intro	oduction	80
5.2 Anal	lysis of Experimental Results	81
5.2.1	Weather Data Analysis	81
5.2.2	Temperature Variations	83
5.2.3	Rate of Useful Heat	94
5.2.4	Collector Performance	96
5.3 Effe	ct of Tilt Angle (θ)	100
5.3.1	Weather Data Analysis	101
5.3.2	Temperature Variations	103
5.3.3	Rate of Useful Heat	109
5.3.4	Collector Performance	111
5.4 Effe	ct of Flow Rate	115
5.4.1	Weather Data Analysis	116
5.4.2	Temperature Variations	118
5.4.3	Rate of Useful Heat	124
5.4.4	Collector Performance	126
5.5 Effe	ct of Evaporation to Adiabatic Length Ratio.	131

5.6 Effe	ct of Evaporation to Adiabatic Length Rat	io with
	0.0033 kg/s	
5.6.1	Weather Data Analysis	132
5.6.2	Temperature Variations	135
5.6.3	Rate of Useful Heat	141
5.6.4	Collector Performance	143
	ct of Evaporation to Adiabatic Length Rat	
5.7.1	Weather Data Analysis	148
5.7.2	Temperature Variations	151
5.7.3	Rate of Useful Heat	159
5.7.4	Collector Performance	160
Chapter Six:	: Conclusions and Recommendations for F	^F uture
Work		166
6.1 Con	clusions	166
6.2 Reco	ommendations for Future Work	168
References.		169
Appendix A		173
Appendix B		175
Appendix C		176
Appendix D		178
Appendix E		181
Appendix F		186

List of Figures

Figure 1-1: Heat pipe configuration [3]	8
Figure 1-2: Vapor Chamber heat pipe [4]	10
Figure 1-3: Loop heat pipe [4]	10
Figure 1-4: Pulsating heat pipe [4]	12
Figure 2-1: The three designs for the heat pipe solar collectors [
Figure 2-2: Collector efficiency and solar radiation versus time [14].	32
Figure 2-3: Numerical collector efficiency versus (T_p-T_a/G) compared with the experimental results [14]	33
Figure 2-4: Temperature of the water (T_w) and the absorber plat (T_P) versus time [14]	
Figure 2-5: Changes of h _e and h _c versus time [14]	35
Figure 2-6: Efficiency of the vacuum collector and the non-vacuum collector [14].	35
Figure 3-1: Experimental Test Rig	54
Figure 3-2: Solar Collector	56
Figure 3-3: Evacuated Tube	57
Figure 3-4: Evacuated Tubes Section View	58
Figure 3-5: Back Corrugated Plate	59
Figure 3-6: Condenser Section	60
Figure 3-7: Collector Holder	61
Figure 3-8: Inlet and Exit Water Thermocouples	61

Figure 3-9: Thermocouples positions for heat pipes and back plate
63
Figure 4-1: Solar Atlas for Egypt71
Figure 4-2: Corrugated Plate Heat Losses75
Figure 4-3: Heat Pipes Thermal Resistance [33]77
Figure 5-1: Solar Radiation variation vs. Time for Day (5) 82
Figure 5-2: Ambient temperature variation vs. Time for Day (5)83
Figure 5-3: Evaporation Heat Pipe Temperatures variation vs. Time for Day (5)
Figure 5-4: Average Evaporation Heat Pipe Temperature variation vs. Time for Day (5)
Figure 5-5: Adiabatic Heat Pipe Temperature variation vs. Time for Day (5)
Figure 5-6: Evaporation and Adiabatic Heat Pipe Temperatures variations vs. Time for Day (5)
Figure 5-7: Heat Pipe Temperature Distribution in the axial direction for Day (5)
Figure 5-8: Average trend of the heat pipes temperture distribution in the axial direction on day (5) at 12:00 pm91
Figure 5-9: Back Plate Temperatures variation vs. Time for Day (5)
Figure 5-10: Average back plate and Back plate Temperatures variation vs. Time for Day (5)
Figure 5-11: Rate of useful heat variation vs. Time for Day (5).95
Figure 5-12: Collector Efficiency variation vs. Time for Day (5)
97

Figure 5-13: Instantaneous Efficiency Curve for Day (5)98
Figure 5-14: Solar Radiation Variation with Time for days (1), (5), and (9)
Figure 5-15: Ambient temperatures variations with Time for Days (1), (5), and (9)
Figure 5-16: Average Evaporation Heat Pipe Temperatures Variation with Time for different collector tilt angles
Figure 5-17: Average Adiabatic Heat Pipe Temperatures variations with Time for different collector tilt angles
Figure 5-18: Average Heat Pipe Temperatures variations with Time for different collector tilt angles
Figure 5-19: Average Back Plate Temperatures Variations with Time for different collector tilt angles
Figure 5-20: Rate of useful heat variations with Time for different collector inclination angles
Figure 5-21: Collector Efficiency variation with Time for different collector tilt angles
Figure 5-22: Instantaneous Efficiency Curve for different collector tilt angles
Figure 5-23: Solar Radiation Variation with Time for days (2), (3), and (5)
Figure 5-24: Ambient Temperature Variation with Time for days (2), (3), and (5)
Figure 5-25: Average Evaporation Heat Pipe Temperatures variations with Time for different water flow rates
Figure 5-26: Average Adiabatic Heat Pipe Temperatures variations with Time for different water flow rates

Figure 5-27: Average Heat Pipe Temperatures variations with Time for different water flow rates
Figure 5-28: Back Plate Temperatures variations with Time for different water flow rates
Figure 5-29: Rate of useful heat variations with Time for different water flow rates
Figure 5-30: Collector Efficiency variations with Time for different water flow rates
Figure 5-31: Instantaneous Efficiency Curve for different water flow rates
Figure 5-32: Solar Radiation Variation with Time for days (4), (5), (6), and (7)
Figure 5-33: Ambient temperatures variations with Time for days (4), (5), (6), and (7)
Figure 5-34: Average Evaporation Heat Pipe Temperatures variations with Time for different length ratios
Figure 5-35: Average Adiabatic Heat Pipe Temperatures variations with Time for different length ratios
Figure 5-36: Average Heat Pipe Temperatures variations with Time for different length ratios
Figure 5-37: Average Back Plate Temperatures variations with Time for different length ratios
Figure 5-38: Rate of useful heat variations with Time for different length ratios
Figure 5-39: Collector Efficiency variations with Time for different length ratios

Figure 5-40: Instantaneous Efficiency Curve for different length ratios
Figure 5-41: Solar Radiation variations with Time for days (3), (8), (10), and (11)
Figure 5-42: Ambient Temperature variations with Time for days (3), (8), (10), and (11)
Figure 5-43: Average Evaporation Heat Pipe Temperatures variations with Time for different length ratios
Figure 5-44: Average Adiabatic Heat Pipe Temperatures variations with Time for different length ratios
Figure 5-45: Average Heat Pipe Temperatures variations with Time for different length ratios
Figure 5-46: Average Back Plate Temperatures variations with Time for different length ratios
Figure 5-47: Rate of useful Heat variations with Time for different length ratios
Figure 5-48: Collector Efficiency variations with Time for different length ratios
Figure 5-49: Instantaneous Efficiency Curves for different length ratios