Endotoxemia as a Risk Factor in Systemic Inflammation and Cardiovascular Disease in Patients on Maintenance Hemodialysis

Thesis

Submitted for partial Fulfillment of MD in Internal Medicine

By

Ashraf Hassan Abd Elmobdy

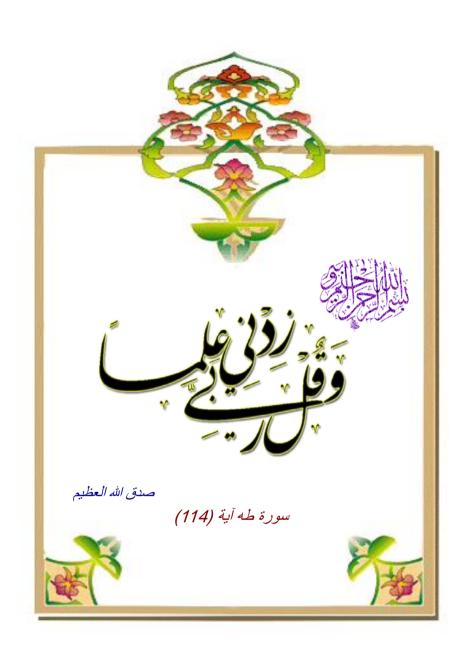
M.B.B. Ch., Ain Shams University MSc., Ain Shams University

Under Supervision of **Prof. Dr. Khaled Hussein Abouseif**

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Howaida Abd Elhamid Elshinnawy

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University


Prof. Dr. Hesham Mohammed Elsayed

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Mona Hosny Abd Elsalam

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2015

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Khaled Hussein Abouseif**, Professor of Internal Medicine and Nephrology,
Faculty of Medicine – Ain Shams University, for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr Prof. Dr. Howaida Abd Elhamid Elshinnawy**, Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University for adding a lot to this work by his experience and for his keen supervision.

I am also thankful to **Prof. Dr. Hesham Mohammed El-Sayed** Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University for his valuable supervision, co-operation and direction that extended throughout this work.

I cannot forget the great help of **Prof. Dr. Mona Hosny Abd Elsalam**, Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University for her invaluable efforts, tireless guidance and for his patience and support to get this work into light.

I would like to direct my special thanks to **Prof. Dr. Ashraf Donia**, Head of Nephrology Institute,, for his invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Contents

	Page
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Review of Literature	4
* Cardiovascular Diseases in Hemodialysis Patients	22
* Endotoxemia in Hemodialysis Patients	
* Management of endotoxemia in Hemodialysis	
Patients	40
 * Water treatment & fluid purity and dialysis membrane 	<u>;</u>
all are a complex triad	55
Patients and Methods	63
Results	69
Discussion	113
Summary	126
Conclusion	134
Recommendations	135
References	136
Arabic Summary	

List of Abbreviations

Abb. Meaning

ACS: Acute coronary syndrome

ADMA.....: Asymmetric dimethyl arginine

ADP:Adenosinediphosphate

AGEs: Advanced glycation end-products

ALP....: Alkaline phosphatase

AMI: Acute myocardial infarction

AMPs....: Antimicrobial peptides

ANSI.....: American National Standards Institute

APKD: Adult polycystic kidney disease

BMI....: Body mass index

BP: Blood pressure

BUN....: Blood urea nitrogen

Ca....: Calcium

CACS.....: Coronary artery calcium score

CAPD: Continuous ambulatory peritoneal

dialysis

CaSR.....: Calcium sensing receptors

CHD....: Coronary heart disease

CHF: Congestive heart failure

cIMT....:: Carotid artery intima _media thickness

CKD....: Chronic kidney disease

CMRI....: Cardiac magnetic resonance imaging

COP..... Cardiac output

CPFA: Coupled plasma filtration adsorption

CRP: C-reactive protein

CRRT....:: Continuous renal replacement therapy

CTnI....: Cardiac troponin I

CTnT....: Cardiac troponin T

CV: Cardiovascular

CVA....: Cerebrovascular accident

CVDs: Cardiovascular diseases

DBP: Diastolic blood pressure

DIC: Disseminated intravascular coagulation

E....: Early trans-mitral diastolic velocity

e'....: Early diastolic velocity of the mitral

annulus

EAA....: Endotoxin activity assay

EBPG.....: European Best Practice guidelines

EF: Ejection fraction

EPO....: Erythropoietin

ESA..... Erythropoiesis-stimulating agents

ESP: Endotoxin scattering photometry

ESRD....: End stage renal disease

FAO: The Food and Agriculture Organization

FGF23....: Fibroblast growth factor 23

FRS: Framingham risk score

GDF-15....: Growth differentiation factor-15

GFR: Glomerular filtration rate

GIT: Gastrointestinal tract

GLP-2: Glucagon-like peptide 2

HCO....: High cut-off

HD: Hemodialysis

HDF....: Hemodiafiltration

HF....: Heart failure

HGB....: Hemoglobin

HsCRP: High sensitivity CRP

HsTnI.....: High-sensitivity troponin I

i.p....: Intraperitoneal

IDWG: Inter-dialytic weight gain

IVSd.....: Inter ventricular septum diameter in

diastole

LA....: Left atrium

LAD....: Left atrial dimension

LAL: Limulus amebocyte lysate

LAVi....: Left atrial volume index

LBP....:: Lipopolysaccharide binding protein

LPS: Lipopolysaccharide

LV....: Left ventricle

LVEDD....: Left ventricle end-diastolic diameter

LVESD: Left ventricle end-systolic diameter

LVH....: Left ventricular hypertrophy

LVM: Left ventricular mass

LVMI....: Left ventricular mass index

LVMI....: Left ventricular mass index

LVPW.....: Left ventricular posterior wall diameter in diastole

MAMPs: Microbe-associated molecular patterns

MAP: Mean arterial blood pressure

MAPK....: Mitogen activated protein kinase

MCP-1: monocyte chemoattractant protein-1

MD2....: Myeloid differentiation factor 2

MI: Myocardial infarction

MP: Methylation potential

Na: Sodium

NAFLD....: Non-alcoholic fatty liver disease

NFAT....: Nuclear factor of activated T cells

NFS.....: Nephrogenic systemic fibrosis

NLRS Nucleotide-binding oligomerization domain receptors

NO: Nitric oxide

NOS: Nitric oxide synthase

NT-pro-BNP....: N-terminal prohormone brain natriuretic peptide

NUF: New single-use ultrafilter

P....: Phosphate

PD....: Peritoneal dialysis

PE: Pulmonary embolism

PEPA: Polyester-polymer alloy

 $PPAR\gamma$ Peroxisomal proliferator activated receptor gamma PRRs....: Pattern-recognition receptors

PTH....: Parathyroid hormone

PTX3....: Pentraxin 3

RAGE: Receptors for advanced glycation end

products

RF....: Renal failure

RO: Reverse osmosis

RWT: Relative wall thickness

SBP....: Systolic blood pressure

SCD: Sudden cardiac death

ST2: Soluble ST-2

TER....:: Trans-epithelial electrical resistance

TG....: Triglycerides

TIA: Transient ischemic attacks

TJ: Tight junction

TLR4....:: Toll-like receptor 4

TSAT: Transferrin saturation

UF....: Ultrafiltration

UFR: Ultrafiltration rate

URR....: Urea reduction ratio

VSMC....:: Vascular smooth muscle cell

WHO.....: the World Health Organization

ZO-1: zonulaoccludens 1

2D: Two dimensional

3D: Three dimensional

List of Tables

Table	Title	Page
1a	Sociodemographic data of the studied groups.	69
1b	characteristics of the studied groups.	71
2	Hemodialysis parameters of the patients in both groups.	72
3a	Comparison between studied groups regarding laboratory results.	74
3b	Comparison between studied groups regarding laboratory results.	76
4	Comparison between the endotoxin level between the two groups.	78
5a	Comparison between studied groups regarding echocardiographic parameters.	80
5b	Comparison between studied groups regarding echocardiographic parameters.	82
6	Sociodemographic characteristics of the low flux and high flux group.	83
7	characteristics of the high flux and low flux group.	85
8	Hemodialysis parameters of the high flux and low flux groups.	86
9a	Comparison between the low flux and high flux groups regarding laboratory results.	88
9b	Comparison between the low flux and high flux groups regarding laboratory results	89
10	Comparison of the endotoxin level. between high flux and low flux groups	93
11a	Comparison between the high flux and low flux regarding echocardiogrphic parameters.	94

List of Tables (Cont.)

	Zist of Tubies (cont.)	
Table	Title	Page
11b	Comparison between the high flux and	95
	low flux regarding echocardiographic	
	parameters.	
12	Correlation of hs CRP with sex, etiology of	96
	renal failure, HCV infection and type of	
	filter.	
13	correlation between hs CRP and	97
	echocardiographic parameters.	
14	Correlation between hsCRP and laboratory	99
	results.	
15	Correlation between endotoxin predialysis	102
	and (sex, etiology of renal failure, HCV and	
	type of filter.	
16	Correlation between endotoxin predialysis	105
	and echocardiographic parameters.	
17	Correaltion between endotoxin predialysis	106
	and laboratory results.	
18	Correlation between endotoxin postdialysis	109
	and (sex, etiology of renal failure, HCV and	
	type of filter.	
19	Correlation between endotoxin postdialysis	110
	and echocardiographic parameters.	
20	Correlation between Endotoxin postdialysis	111
	and laboratory results.	

Dist of Figures (cont.)		
Fig.	Title	Page
1	Causes of death in prevalent HDpatients	5
	(Renal Data System, USRDS 2013).	
2	Dose-effect relation between hs CRP level and	6
	IL-6:IL-10 ratio and the number of LV	
	segments that subsequently developed wall	
	motion abnormalities during or after HD.	
3	Comparison of the distribution of values of left	7
	atrial dimension (A - LAD) and left atrial	
	volume index (B - LAVi) in subjects from	
	Group I (control) and Group II (upper quartile	
	of CRP) of the study population.	10
4	Changes in blood volume, E and mean e'	13
	in comparison to predialysis values.	
5	Kaplan-Meier survival curves for CV mortality	15
	in patients with CACS above 800 Agatston	
	units (solid line) versus patients with lower	
	CACS values .	21
6	Frequent HD is associated with favorable	21
	changes in LV mass among survivors in contrast to conventional HD.	
7	Schematic diagram of endotoxin molecule	23
/	structure.	23
8	Bar graphs depicting the TER in intestinal	25
	epithelial cell monolayers incubated for 24h in	23
	regular media and those incubated in media	
	containing 42 or 72 mg/dl urea.	
9	Representative Western blots and group data	26
	depicting protein abundance of occludin,	
	claudin-1 and ZO-1 in intestinal epithelial cell	
	monolayers incubated for 24h in media	
	containing 42 mg/dl urea alone and those	
	incubated in media containing 42 mg/dl urea	
	plus urease.	

Dist of Figures (cont.)		
Fig.	Title	Page
10	Risk factors aggravating GI translocation of	29
	endotoxin in HD patients.	
11	Distribution of circulating endotoxin levels	30
10	across the spectrum of CKD patients.	22
12	The inflammatory pathway induced by endotoxin.	32
13	Predialysis endotoxin levels were	35
13	significantly correlated with	33
	a) The number of myocardial stunned	
	segments.	
	b) cTnT, a marker of myocardial damage	
14	Effect of i.p. LPS injection on the cardiac	36
	muscle of the mice.	
15	Effect of i.p. LPS injection on IL-6	37
	expression and collagen fraction area of the	
	LV.	
16	Probiotics benefit the host by	43
	communicating with a variety of cell types	
17	Flow charts of on-line dialysis	51
1.0	fluidpreparation.	
18	Retention of P. aeruginosa LPS assessed	52
	by determining LPS concentrations (EU/ml)	
10	with the LAL test. The coupled plasma filtration adsorption	52
19	The coupled plasma filtration adsorption (CPFA) circuit.	53
20	Interpretation of water sampling results	58
	based on ET levels.	20
21		59
	based on ET levels.	
22	Inerpretation of dialysis fluid sampling	61
	results.	

Fig.	Title	Page
23	Show significant relation between the age of	70
	both groups and dry weight of both groups.	
24	Show significant difference in UF rate	73
	between both groups.	
25	Shows significant difference between the	75
	two groups regarding ferritin level.	
26	Shows significant difference between the	77
	two groups regarding predialysis urea.	
27	Shows significant difference in predialysis	79
	endotoxin between the two groups.	
28	Shows significant difference in EF between	81
	both groups.	
29	Shows significant difference between the	81
	two groups regarding EF category.	
30	<u> </u>	84
	high flux and low flux group as regard age.	
31	shows highly significant difference between	87
	the high flux and low flux group as regard	
	pump speed.	
32	shows significant difference between the	90
	high flux and low flux group as regard	
	predialysis urea.	0.0
33	shows significant difference between the	90
2.4	high flux and low flux group as regard PTH.	0.1
34	shows significant difference between the	91
2.5	high flux and low flux group as regard URR.	0.1
35	shows significant difference between the	91
	high flux and low flux group as regard ca	
26	level.	02
36	shows significant difference between the	92
	high flux and low flux as regard hs CRP.	

Dist of Figures (cont.)		
Fig.	Title	Page
37	shows significant difference between the low flux and high flux regarding phosphorus level.	92
38	shows significant difference between the two groups as regard LVH.	95
39	shows positive correlation between hs CRP and AF.	98
40	shows negative correlation between hs CRP and serum iron.	100
41	shows negative correlation between hs CRP and T.sat%.	100
42	shows positive correlation between hs CRP and endotoxin predialysis.	101
43	shows positive correlation between endotoxin predialysis and HCV infection.	103
44	shows negative correlation between endotoxin predialysis and high flux filter	104
45	shows negative correlation between endotoxin predialysis and predialysis diastolic BP.	107
46	shows positive correlation between endotoxin predialysis and endotoxin postdialysis.	107
47	shows positive correlation between endotoxin predialysis and endotoxin delta change.	108
48	shows positive correlation between endotoxin postdialysis and endotoxin delta change.	109