

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

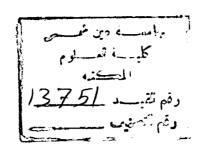
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Comparative Study of Different Semiconductor Detectors and their use in Radioactivity

A Thesis

Submitted for the degree of Master of Science As a partial fulfillment for requirements of the Master of Science

By

Safa Abd El Hamid Mohamed El Faramawy

B.Sc. (Physics & Chemistry), 2007, Ain Shams University

Supervised By

Prof. Dr. Samir Yousha El-khamisy

Physics Department, Faculty of Science,

Ain Shams University

Dr. Elsayed Salama Ahmed

Ass. Professor. of physics,

Ain Shams University

H. Die J Dr. Hanan Mohamed Diab

Ass. Professor of physics,

Nuclear and Radiological

537.622 **Regulatory Authority**

(2015)

179 p + 14 p por cation

Ain Shams University

Faculty of Science

Physics Department

Degree: M.Sc. degree in Physics

Title: Comparative study of different Semiconductor

detectors and their use in Radioactivity

Name: Safa Abd El Hamid Mohamed El Faramawy

Thesis Advisors

Approved

Prof. Dr. Samir Yousha El-khamisy

5.4.El-1

Physics Department, Faculty of Science, Ain Shams University

Dr. Hanan Mohamed Diab

H. Dias

Nuclear and Radiological Regulatory Authority

Dr. Elsayed Salama Ahmed.

E. Salon

Physics Department, Faculty of Science, Ain Shams University

Ain Shams University Faculty of Science Physics Department

Name: Safa Abd El Hamid Mohamed El Faramawy

Degree: M.Sc. degree in Physics

Department: Physics & Chemistry department

Faculty: Faculty of Science

University: Ain Shams University

Graduation date: 2007, Ain Shams University

Registration date: 13/12/2010

Grant date: / /

Acknowledgement

All gratitude is due to ALLAH the most merciful, who guided and gave me strength to complete this work.

I would like to express my unlimited thanks to my parents for their patience and encouragement.

I wish to express my sincere thanks and gratitude to my team of supervisors.

I wish to express my deep thanks to **Prof. Samir Yousha El- khamisy** professor of Nuclear physics at Physics Department,
Faculty of Science, Ain Shams University, for his supervision,
honest guidance, continuous encouragement and trustful help
through the experimentation and writing the manuscript.

I would like to thank **Dr. Hanan Mohamed Ahmed Diab**, assistant professor of Radiation physics at Nuclear and Radiological Regulatory Authority, Radiation protection department, for her valuable help in practical applications, her advice and generous assistance and continuous helpful discussions leading always towards more perfection and achievement of this work.

I would like to thank with gratitude **Dr. El-sayed Salama Ahmed**, assistant professor of Radiation Physics at Physics

Department, Faculty of Science, Ain Shams University, for his kind supervision, kind encouragement, his continuous support and kind guidance throughout the present work.

I am also owes a great of gratitude to **Dr. Waleed Mohammed Abdellah** assistant professor of Radiation
chemistry at Nuclear and Radiological Regulatory Authority,
Radiation protection department, for his assistance in the
experimental part for the thesis, Useful discussion, continuous
guidance and simulating discussion throughout the thesis.

Finally I would like to express my sincere thanks and deepest gratitude to thank my sisters.

CONTENTS

Acknowledgement	Ι
Contents	III
Abstract	XV
General Introduction and aim of the w	vork XVI
Chapter Introduction and Lite	武雄 医二氏染管结肠内皮囊 医海绵
1.1 Introduction	1
1.2 Radioactivity in Environmental	2
1.2.1 Natural Background Sources	2
1.2.1.1 Cosmogenic Radionuclio	les 3
1.2.1.2 Primordial Radionuclide	s 4
1.2.1.2.1 Uranium Series(Uran	nium-238) 4
1.2.1.2.2 Actinium Series (Ura	nium - 235) 11
1.2.1.2.3 Thorium – 232 Series	13
1.2.1.2.4 Non - Series Radion	uclides 16
1.2.2 Man – Made Radiation sources	18
1.2.2.1 Nuclear Test	18

1.2.2.2 Nuclear power plants	19
1.2.2.3 Medical Uses of Radiation	19
1.3 Technically Enhanced Natural Occurring	19
Radioactive Materials (TE - NORM)	
1.4 Path Ways of Radionuclides	22
1.5 Literature Review	23
1.5.1 Environmental Radioactivity levels Measured by Gamma-	24
Spectrometry	
1.5.2 Environmental Radioactivity levels Measured by Alpha-	42
Spectrometry	
Chapter 2	
Theoretical Aspects	
2.1 Interaction of Gamma – ray with Matter	46
2.1.1 Photoelectric effect	46
2.1.2 Compton scattering	47
2.1.3 Pair Production	50
2.1.4 Combined Effect	52
2.2 Gamma Rays Attenuation	53