The Effect of stem cell application on bone Regenerate during distraction osteogensis An Experimental Study

Thesis Submitted for partial fulfillment of the requirements for master degree in oral and maxillofacial surgery

Presented by

Yasser Mohamed Nabil Ahmed Khirat El Hadidi

B.D.S. 2008

Ain shams university

<u>Supervisors</u>

Salah Abd El Fatah Ahmed

Associate Professor of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ain Shams University

Marwa Abd ElWahab El Kassaby

Associate Professor of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ain Shams University

Sayed Bakry Ahmed

Associate Professor, Faculty of Science, Al-Azhar University

Faculty of Dentistry

Ain-Shams University

2015

"This thesis was a part of an experimental project conducted on distraction osteogenesis to assess the effect of Mesenchymal Stem Cell application on bone quality during distraction osteogenesis and assessment the effect of rate pattern alteration on bone quality and quantity. This project included thesis of dear colleagues Alaa Hanaa, Alaa Jamal, Fatma Wageeh and Kamal Alhadama."

"For the one who believes in me My Mother" "In The Memory of Dear Friend

Abdu Allah Abd El Razek Hussain El

Hawary"

"When I saw the embryo, I suddenly realized there was such a small difference between it and my daughters. I thought we can't keep destroying embryos for our research. There must be another way"

Shinya Yamanaka, Noble prize laureate in 2012 for his achievements in stem cell research

List of Contents

Introduction	1
Review of literature	3
Aim of Study	29
Material and Methods	30
Results	60
Discussion	76
Summary, Conclusion and Recommendation	87
References	91
Arabic summary	

Acknowledgment

I would like to express my special thanks and gratitude to

- Dr/ Maram Obeid, lecturer of Endodontics, Faculty of Dentistry, Ain Shams University, for proposing the research idea of use of mesenchymal stem cells and providing priceless data which helped a lot in writing the thesis protocol.
- Pancreatic Transplant Unit, Ain Shams University Staff, especially Mr. AlaaEdris (technical supervisor of the laboratory of the unit) for their valuable support in hosting the animals and providing the technical laboratory support for the current research.
- Professor Dr/ Nahed Khamis Head of Pathology department, Faculty of Medicine, Ain Shams University, for her sincere help during histological assessment of the results of this research.
- Last, but not the least the distraction osteogensis project team (2011 master degree of Oral and Maxillofacial Surgery Faculty of Dentistry, Ain Shams University post graduate students) Alaa Hanna, Alaa Jamal, FatmaWageh and Kamal Alhadama for valuable assistance in conducting this research.

List of figures

Figure 1: Extra oral photograph showing shaved Submandibular area scrubbed with povidine iodine 10% solution scrub.	46
Figure 2: Extra oral photograph showing skin dissection following the submandibular incision	46
Figure 3: Extra oral photograph showing dissection of mental nerve following muscle and periosteum dissection.	. 47
Figure 4: Extra oral photograph showing osteotomy preparation from superior border to inferior border of mandible.	47
Figure 5: A. Mono directionalcustom madestainless steel distractor, B. Modified distractor for goats.	
Figure 6: Extra oral photograph showing distractor fixation by mini- screws	. 48
Figure 7: Extra oral photograph showing wound closure by black silk (skin layer)	
Figure 8: A photograph showing draping of iliac crest prior to bone marrow aspiration.	. 50
Figure 9: A photograph showing trochar administration for bone marrow aspiration.	. 50
Figure 10: A photograph showing bone marrow aspiration	. 51
Figure 11: Phosphate Buffer Saline and Biocoll seprating solution	. 51
Figure 12: Titration of bone marrow aspirate over Biocoll	52
Figure 13: Titrated bone marrow aspirate over Biocoll	52
Figure 14: Centrifuging of the bone marrow aspirtate	53
Figure 15: Buffy coat layer rich with HDMSC	53

Figure 16: Aspiration of buffy coat layer54
Figure 17: UDMSC rich pellet in bottom of tube following third centrifuge54
Figure 18: Highly concentrated Streptomycine and Penicillin and fetal bovine serum
Figure 19: The incubated stem cells55
Figure 20: A photograph showing dissected hemi-mandible prior to x-ray imaging and histological preparation
Figure 21: Extraoral photograph showing measurement of distance between screws intraoperative
Figure 22: Cone Beam Computed Tomography machine, Planmeca Promax Proface
Figure 23: Sample position in radiographic examination 57
Figure 24: PlanmecaRomexis viewer 3.5.1.R (evaluation of bone thickness, height, distance moved and density
Figure 25: Dissected cadaveric sample
Figure 26: Histological preparation after nitric acid preservation
Figure 27: Screen shot from Leica Q win and Q go software
Figure 28: Extra-oral photographic image showing A. Pre-distraction image with no shift in midline, B. Post-distraction image with shift in midline
Figure 29: Radiographic images showing distraction distance demarked by screws recorded in millimeter for: A. Distraction distance in the study group, B. Distraction distance in the control group
Figure 30: Bar chart showing difference between distraction distance of the study and the control groups in millimeter
Figure 31: Radiographic images showing three dimensional measurements in millimeter. A. Buco-lingual width in the study group, B. Buco-lingual width in the control group, C. Bone height in the study group and D. Bone height in the control group.

Figure 32: Bar chart showing difference between three dimensional measurements of the study and the control groups in millimeter
Figure 33: Screen shot of Romexis viewer displaying radiographic image showing bone density in A. Study and B. Control groups by Hounsfield units.
Figure 34: Bar chart showing difference in bone density in Hounsfield unit between the study and the control groups
Figure 35: Screen shot for histo-morphometry of H&E section A. Cortical bone in study group and B. Cortical bone in control group
Figure 36: Bar chart showing difference in outer cortical bone thickness in µm between study and control group
Figure 37: : Screen shot photo for histo-morphometry of H&E section. A. Trabecular bone thickness in study group and B. Trabecular bone thickness in control group
Figure 38: Bar chart showing difference in trabecular bone thickness in μm between study and control group samples
Figure 39: Screen shot photo for histo-morphometry of Masson Trichrom section A. Osteiod bone in study group marked by blue color and B. Osteiod bone in control group marked by blue color
Figure 40: Bar chart showing difference in osteiod bone percentage between study and control group samples

List of tables

Table 1: The study grouping31
Table 2: DO timeline of study group
Table 3: DO timeline of control group
Table 4: Different methods of assessment
Table 5: Distraction distance in study and control groups in millimeter 64
Table 6: Difference between the study and the control group distraction distance statistical data
Table 7: Three dimensional measurements of study and control groups in millimeter
Table 8: Difference between the study and the control group three dimensional statistical data
Table 9: Difference in bone density by Hounsfield unit between the study and the control group
Table 10: Difference between the study and the control groups bone density statistical data
Table 11: Difference between outer cortical bone thickness in μm between study and control groups
Table 12:Difference between outer cortical bone thickness in µm of the study and the control groups statistical data71
Table 13: Difference in trabecular bone thickness in μm between study and control group72
Table 14: Difference between trabecular bone thickness in µm of the study and the control groups statistical data
Table 15: Difference in osteiod bone percentage between study and control group74
Table 16: Difference in osteiod bone percentage of the study and the control groups statistical data

List of abbreviations

DO: DistractionOsteogenesis.

BMP: Bone Morphogenic Protein.

NGF: Nerve Growth Factor.

MSCs: Mesenchymal Stem Cells.

BMSSCs: Bone Marrow Stromal Stem Cells.

DPSCs: Dental Pulp Stem Cells.

bFGF: basic Fibroblast Growth Factor.

MMP: Matrix Metalloproteinase.

SDF: Stromal Derived Factor.

PDL: Periodontal ligaments.

TMJ: Tempromandibular Joint.

BBM: Bovine Bone Mineral.

PBS: Phosphate Buffer Saline.

CBCT: Cone Beam Computed Tomography.

EDAX: Energy Dispersive X-Ray.

SEM: Scanning Electron Microscope.

H&E: Haematoxylin and Eosin

Introduction

Bone reconstruction procedures in the craniofacial region are considered a complicated condition, which usually require skeletal correction to overcome psychological, breathing and eating problems by reconstructing both soft and hard tissues. Grafting from distant sites to regenerate and reconstruct missing bony segments carries the risk of donor site morbidity, the risk of rejection, infection or low bone quality. Distraction osteogenesis is a surgical process used in reconstruction of skeletal deformities and lengthening of the long bones. Distraction technology was used mainly in orthopedics, and is currently used in the oral and maxillofacial region to correct deformities of the facial skeleton without grafting risks (1).

Distraction osteogenesis refers to a surgical technique designed to address defects and deficiencies in the skeleton. Distraction osteogenesis originally was first mentioned by Hippocrates, Ilizarov introduced the distraction osteogenesis 40 years ago and the orthopedic community has employed distraction techniques to lengthen and reconstruct arms and legs ⁽²⁾.

Distraction surgery was first reported to treat defects of the oral and facial region in 1992. Since then, the surgical and technological advances made in the field of distraction osteogenesis provided oral and maxillofacial surgeons

with a safe and predictable method to treat selected deformities of the oral and facial skeleton (3).

Maksimov in 1908 was the first scientist to introduce the term stem cells. Becker et al. in 1963 were the first to prove the existence of self reproducible cells in the bone marrow of rats. Stem cell therapy was used in many fields of regenerative medicine. Generally, the clinical use of mesenchymal stem cells remains a controversial issue. However, the use of mesenchymal stem cells use carries great hope in enhancing the healing and regenerative power of newly formed tissues ⁽⁴⁾.

Distraction osteogenesis is a useful technique in regeneration of new bone, but has the drawback of decreased bone quality and quantity (5).

The advantage of using mesenchymal stem cells combined with distraction osteogenesis might aid in improving the bone quality and quantity of the distracted bone regenerate.

Grafting from distant sites to regenerate and reconstruct missing bony segments carries the risk of donor site morbidity, the risk of rejection, infection or low bone quality. Those disadvantages supported the use of distraction osteogenesis. Distraction osteogenesis is a surgical process used in reconstruction of skeletal deformities and lengthening of the long bones. Distraction technology is used in orthopedics and in the oral and maxillofacial region. These techniques are now utilized extensively by the maxillofacial surgeons for the correction of congenital and acquired defects. Distraction osteogenesis is used to correct congenital defects as micrognathia, midface hypoplasia and fronto-orbital hypoplasia and acquired defect as craniofacial deformities following trauma, pathological defects and surgical defects ⁽¹⁾.

Distraction osteogenesis originally was first mentioned by Hippocrates ⁽²⁾. Codivilla in 1905 ⁽⁶⁾ was the first to introduce surgical distraction for lengthening of the lower limbs, but his early cases suffered plenty of complications especially during healing due to failure and infection. Putti in 1921 ⁽⁷⁾ designed a unilateral external fixation device to lengthen the femur and reduce trauma of the osteotomy by constant control of the traction process. Abbott in1924 ⁽⁸⁾ conducted an application of bilateral external