Recent Modalities in Cerebral Monitoring During Anesthesia

Essay

Submitted for partial fulfillment of master degree in anesthesia

By

Mahmoud Ibrahim Abdelwahab Alkholany (MB,B, Ch)

Supervised by

Prof. Dr./ Nehal Gamal Eldin Nooh

Professor of Anesthesiology and Intensive Care Medicine Faculty of medicine-Ain Shams University

Dr./Fahmy Saad Latif

Assistant Professor of Anesthesiology and Intensive Care Medicine Faculty of medicine-Ain Shams University

Dr./Hadeel Magdy AbdElhameed

Lecturer of Anesthesiology and Intensive Care Medicine Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2010

List of Abbreviations

133Xe
 AC
 Alternating current
 ADP
 Adenosine diphosphate

ADVO₂ : Arteriovenous content difference in oxygen

AMLR : Auditory middle latency responseASA : American society of anesthesiaASSR : Auditory steady state response

ATP : Adenosine triphosphate

BAEP : Brainstem auditory evoked potential

BIS : Bispectral index

BRL : Brain research laboratories
CABG : Coronary artery bypass grafting

CBF : Cerebral blood flow
CBV : Cerebral blood volume
CMR : Cerebral metabolic rate
CNS : Central nervous system

CO₂ : Carbon dioxide

CPB : Cardiopulmonary bypassCPP : Cerebral perfusion pressureCSA : Compressed spectral array

CSF : Cerebrospinal fluid
 CSI : Cerebral state index
 CSM : Cerebral state monitor
 CT : Computerized tomography

CVR : Cerebral vascular resistance

CytO₂ : Cytochrome oxidase
 DSA : Density spectral array
 ECoG : Electrocorticography
 EEG : Electroencephalogram

EICA : Extracranial internal carotid artery

EMG : ElectromyographyEPs : Evoked potentialsF : Frequency shift

List of Abbreviations (Cont.)

FEMG : Facial electromyography

fTCD : Functional transcranial Doppler

FV : Flow velocity

Hb : Deoxygenated haemoglobin
HbO₂ : Oxygenated haemoglobin
HITs : High intensity signals
ICP : Intracranial pressure
ICU : Intensive care unit
IJV : Internal jugular vein

LDF : Laser Doppler flowmetry

LED : Light emitting diode

MAC : Mininmal alveolar concentration

MAP : Mean arterial pressure

MCAv : Middle cerebral artery flow velocity

MEP : Motor evoked potential

MRI : Magnetic resonance imagingMRS : Magnetic resonance spectroscopy

N₂O : Nitrous oxide

NAD : Nicotinamide adenine dinucleotide

NADH : Reduced nicotinamide adenine dinucleotide

NIH : National institute of healthNIRS : Near infrared spectroscopy

NP : Neuropsychiatric

NSE : Neuron specific enolase

OR : Operating room

PaCo₂ : Arterial carbon dioxide tension

PACU : Post anesthesia care unit
 PbtO₂ : Brain tissue oxygen tension
 PET : Positron emission tomography

PI : Pulsatility index

PiVO₂ : Jugular bulb venous oxygen tension

PSI : Patient state index

QEEG : Quantitative electroencephalogram

List of Abbreviations (Cont.)

rCBF : Regional cerebral blood flow

RE : Response entropy

RFA : Retinal fluorecin angiography rSO₂ : Regional cerebral oxygenation

SCADs : Small capillary and arteriolar dilatations

ScO₂ : Cerebral saturation of oxygen

SE : State entropy

SEF
 Spectral edge frequency
 SEPs
 Sensory evoked potentials
 SFx
 Spectral frequency indices
 SJO₂
 Jugular bulb oxygen saturation
 SJVO₂
 Jugular venous oxygen saturation
 SSEP
 Somatosensory evoked potential

TCD : Transcranial Doppler

TCeMEP : Transcranial electric motor evoked potential

TEE : Transeosophageal echocardiography

VEP : Visual evoked potential

V_{mca} : Middle cerebrl artery flow velocity

 V_{mean} : Mean blood flow velocity

VPL : Ventral posterior lateral nucleus of thalamus

List of Tables

Table	Subject	Page
1	Compoition of cerebrospinal fluid and serum	8
_	in man.	
2	The three major components that occupy	10
	space in the skull	
3	Cellular processes that require energy.	13
4	Procedures that may protect against ischemic	17
	damage	
5	Effects of anesthetics on CBF/CMRO2.	21
6	Entropy range guidelines as they are shown	44
	on the waveform field	
7	The different cerebral state indices (CSI) used	50
	in the cerebral state monitor	
8	Effects of inhalational agents on seizure	52
	activity in epileptics	
9	Effects of intravenous agents on seizure	55
	activity in epileptics	
10	Basic principles of SEP analysis for intra-	66
10	operative monitoring.	00
11	Normal flow velocity within the basal	93
	cerebral arteries in 13 studies	70
12	Association between the Number of Emboli	127
1.2	Detected Intraoperatively and	12,
	Neurobehavioral Outcome.	
13	Characteristics of various cerebral perfusion	143
13	_	143
	monitors	

Fig.	Subject	Page
1	Factors affecting Cerebral blood flow	5
2	The effect of increasing volume on intracranial pressure	11
3	Energy metabolism in the brain	12
4	The effect of hypoxia or ischemia on ion and metabolite levels in neurons	16
5	The effect of hypoxia or ischemia on cellular changes leading to apoptosis	19
6	The international 10-20 system	28
7	Different types of brain waves in the normal Electroencephalogram	30
8	Principle of Fast Fourier Transform (FFT) of the raw EEG	32
9	Compressed Spectral Array (CSA).	33
10	Summary of the various attempts to simplify analysis of EEG power spectra	34
11	Schematic presentation how Spectral Edge Frequency 95% (SEF 95) is calculated by using the area under the curve of the spectral histogram at different situations	35
12	The ratio of power calculating the power in the high frequency range against the lower frequency band delta	35
13	Examples of the processed native EEG	36
14	The Aspect EEG monitor depicting the BIS value during anesthesia which is able to reflect different hypnotic states	39
15	The BIS-electrode	40
16	Brain metabolic rate and the simultaneous reduction in BIS with increasing concentrations of a volatile anesthetic	41
17	Placement of the entropy sensor on the forehead of the patient	42

Fig.	Subject	Page
18	Front view of the PSA 4000 EEG monitor	45
	with the integrated patient state index (PSI) in	
	a numeric form	
19	The different EEG patterns as they are used	47
	for determination of sleep stages (A to F) and	
	sedation in patients undergoing anesthesia in	
	the OR or sedation in the ICU.	
20	Display of the Narcotrend® monitor with the	48
	raw EEG signal	
21	The handheld ultralight (150 g) cerebral state	49
	monitor (60 \times 117 mm) determining the	
	patients state of unconsciousness	
22	An example of the SEP (following left	57
	median nerve stimulation) recorded from left	
	Erb's point (B) and right central region (A)	
23	BAEP recording showing waves I–V	59
24	Transient (AMLR-top row) and steady (40	69
	Hz ASSR-lower row) state responses.	
25	Schematic drawing showing the stimulus	71
	points for transcranial electrical stimulation	
	of the motor cortex	
26	Schematic drawings demonstrating the sites	72
	in which D-waves and muscle MEPs are	
	recorded, together with actual recordings	
27	The Kety-Schmidt technique for measuring	78
	cerebral blood flow using the freely diffusible	
	tracer N2O.	
28	Measurement of CBF using intracarotid	82
	injection of ¹³³ Xe	
29	Compartmental analysis of CBF using a	83
	semilogarithmic plot	

Fig.	Subject	Page
30	(Top trace) Diagrammatic representation of a	87
	thermodilution catheter using two thermistors	
	which can be inserted in the jugular bulb for	
	the measurement of CBF. (Bottom trace) This	
	shows temperatures recorded by internal and	
	external thermistors over a period of 30 min	
31	A graphic depiction of the principle of laser	89
	Doppler flowmetry	
32	Normal transcranial doppler findings in a	92
	healthy adult	
33	Changes of TCD spectrum in a 23-year-old	96
	man after severe head injury	
34	Typical TCD appearance of air (a) and solid	97
	(b) arterial emboli (indicated by the lower	
	vertical bars)	
35	Leg-cuff dynamic autoregulation test	99
36	Recordings of transient hyperaemic response	100
	after carotid compression from healthy adult	
	(upper) and patient with severe head injury	
	(lower)	
37	Simultaneous recordings of middle cerebral	105
	artery flow velocity (MCA FV), laser	
	Doppler flowmetry (/DF) of the right	
	forehead and oxyhaemoglobin concentration	
	(HbO2) of the right frontal lobe in a 25-year-	
	old man with head injury	
38	The technique used for inserting jugular bulb	108
	catheters	
39	The speed of blood withdrawal from jugular	109
	bulb catheters affects accuracy of reading	

Fig.	Subject	Page
40	Results of microdiasylate (glucose,	116
	glutamate, glycerol, lactate and pyruvate)	
	concentrations in the nonlesional hemisphere	
	of a 65-year-old woman with large left frontal	
	contusion	
41	Techniques used to measure intracranial	118
	pressure	
42	Fifty percent of the embolic signals were	127
	detected during 1 of the 13 procedures listed	
43	(Top) Confirmed macroemboli (white	131
	arrows) in the left common carotid artery 0.8	
	seconds after they are visualized by TEE	
	(bottom)	
44	Intraoperative epiaortic scanning using	132
	ultrasound enables visualization of aortic	
	atherosclerosis before surgical	
	instrumentation	
45	A section of atherosclerotic aorta shows the	133
	accuracy of the ultrasonic image	

Contents

List Abbreviations	
List of tables	
List of figures	
Introduction	1
Physiology of Cerebral blood flow, Cerebral metabolism and CSF and ICP	n 3
Cerebral monitoring during anesthesia	4
Special surgical techniques necessating special cerebral	
monitoring	122
Summary	159
References	161
Arabic summary	

الجديد في المراقبة الدماغية أثناء التخدير

رسالة توطئة للحصول على درجة الماجستير في التخدير

مقدمة من الطبيب/محمود إبراهيم عبد الوهاب الخولاني بكالوريوس الطب والجراحة العامة-جامعة عين شمس

تحت إشراف الدكتورة/نهال جمال الدين نوح الستاذة الدكتورة/نهال جمال الدين نوح استاذ التخدير والرعاية المركزة كلية الطب-جامعة عين شمس

الدكتور /فهمي سعد لطيف أستاذ مساعد التخدير والرعاية المركزة كلية الطب-جامعة عين شمس

الدكتورة/هديل مجدي عبد الحميد مدرس التخدير والرعاية المركزة كلية الطب-جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٠

الملخص العربي

إن المرضى الذين يخضعون للعمليات الجراحية المختلفة هم عرضة لدمور الجهاز العصبى المركزى بسبب نقص الامداد الدموى أو الأكسجين. ربما يكون هذا الخطرمتصل بأحداث لها صلة بديناميكية الجهاز الدورى أو انقطاع الامداد الدموى المصاحب لعمليات جراحية غير عصبية (مثال: مرضى الضيق الشديد بالشريان الثباتى الخاضعين لاستخدام جهاز القلب الصناعى) أو قد يكون الخطر متأصل في إجراء الجراحة العصبية نفسها (مثال: الاغلاق المؤقت للشريان المغذى أثناء جراحة الشرايين الدماغية المتمددة)

هذه الحقيقة جعلت من توافر المعلومات المباشرة في الوقت المناسب حول آثار الجراحة في وظيفة الجهاز العصبي ، ومدى كفاية إمدادات الدم له مسألة في غاية الأهمية وأثارت الانتباه إلى أهمية الرصد الدماغى للعمليات الجراحية المختلفة أثناء التخدير.

عموما فإن الدماغ يمكن رصده من حيث:

- 1. الوظيفة: من خلال دراسة التغيرات في النشاط الكهربي للقشرة الدماغية أو دراسة النشاط الكهربائي على طول الممرات الحسية أو الحركية التي تعكس استجابة المخ والسلامة الوظيفية لمختلف الممرات الحسية والحركية للمواد التخديرية المختلفة أثناء مختلف العمليات الجراحية.
- Y. تدفق الدم: اعتمادا على الكثير من الطرائق التى لكل منها مزاياه وعيوبه بالنسبة لكفاءتها في اظهار التغيرات في التدفق العام و المنطقي للدم

- استجابة للعوامل التخديرية المختلفة أثناء العمليات الجراحية المختلفة و تأثيرها على إدارة ونتائج مثل هذه التغييرات.
- 7. الأوكسجين الدماغي: والتي لها تأثيرها على التوقيت المناسب للتدخل كلما ضعف الأوكسجين في الدماغ أثناء العمليات الجراحية المختلفة
- الأيض الدماغي: وهو ما يعكس حالة الأيض الدماغ تحت تأثير التخدير.
- •. الضغط داخل الجمجمة: الذي يساعد في الحفاظ على الضغط داخل الجمجمة ضمن النطاقات التي لا تتداخل مع الضغط المسئول عن الامداد الدموى للدماغ.

Acknowledgment

First and above all, my deepest gratitude and thanks to God for achieving any work in my life.


I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to my eminent Prof. Dr. Nehal Gamal Eldin Nooh Professor of Anesthesiology for his generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

I am deeply grateful to Dr. Fahmy Saad Latif Assistant Professor of Anesthesiology, Faculty of Medicine Ain Shams University, who devoted his time, effort and experience to facilitate the production of this work.

And special thanks to **Dr. Hadeel Magdy AbdElhameed** for her great help and support throughout this work.

Finally I would like to express my deepest thankfulness to my **Family** for their great help and support that without them I can do nothing.

Mahmoud Ibrahim Alkholany

