

Role of Multi Detector Computed Tomography (MDCT) in diagnosis of PROPTOSIS

Essay

submitted for partial fulfillment of Master Degree in Radiodiagnosis

Yasmine Atteya Mansour El Feky
M.B,B.CH
Faculty of medicine
Zagazig university

Under the supervision of

Prof. Dr. Hossam Fahmy Abd El Hamed

Professor of radiodiagnosis
Faculty of medicine – Ain Shams university

Dr .Gamal Niazy

Lecturer of radiodiagnosis
Faculty of medicine – Ain Shams university

Dr.AMR AMER

Lecturer of radiodaiagnosis Research institute of ophthalmology

> Faculty of medicine Ain Shams university 2015

وما توفيقي إلا بالله عليه توكلت و إليه أنيب

List of Contents

List of Tables	iii
List of Figures	iv
List of Abbreviations	xii
Acknowledgement	XV
Review of Literatures	
Introduction	
Aim of the Work	3
Anatomy of the orbit and the globe	4
The orbit	4
The bony orbit	4
 Foramen, fissures, tubercles, and crests 	6
 Innervations of the orbit 	10
 Visual pathway 	13
 Vascular supply of the orbit 	14
Blood supply	14
Venous and lymphatic drainage	15
Soft tissue complex of the orbit	16
■ The globe	19
Pathology of proptosis	24
 Diagnostic strategy 	24
 Inflammatory and infectious 	25
Orbital inflammatory disease (OID)	25
• Graves' dysthyroid ophthalmopathy/graves' orbitopathy (GO)	
■ Tumors	
Vasculogenic orbital masses	
Lymphoproliferative lesions	
Leukemias	
Optic nerve and meningeal lesions	
Lacrimal gland masses	
Metastatic lesions	
• Shwanomas	
Rhabdomyosarcoma	50

•	Vascular lesions	51
•	Trauma	55
Princ	ciples of MDCT &Technique of the study	58
•	Historical over view	58
•	Basic principle of CT	58
	• First generation of CT	
	Second generation of CT	60
	Third generation of CT	
	Fourth generation of CT	
•	Principles and technique of MDCT	
•	Technical parameters	
	• Pitch	66
	Image quality	66
	Thin-slice review	
	Three-dimensional (3D) reconstruction	
	Maximum and minimum intensity projection	
	Multiplanar reformatting	
	• Dose	
	Reporting techniques	
	Advantages and disadvantages of MDCT	
Role	of MDCT in diagnosis of proptosis	
•	Imaging protocol	
•	Diagnostic role of MDCT in proptosis	
	Role in Inflammatory and infectious lesions	
	Orbital inflammatory disease	
	 Graves' dysthyroid ophthalmopathy/graves' 	
	orbitopathy (GO)	89
	Role in Tumors	93
	Vasculogenic orbital masses	93
	 Lymphoproliferative lesions 	
	o Leukemias	
	Optic nerve and meningeal lesions	
	Lacrimal gland massesShwanomas	
	o Rhabdomyosarcoma	
	Metastatic lesions	
	Role in Vascular lesions	
	Capillary hemangiomas	105

	 Cavernous hemangiomas (solitary, encapsulated 	
	venous-lymphatic malformation)	106
	 Lymphangioma (venous lymphatic malformation) 	106
	O Venous vascular malformation	107
	(orbital varix)	107
	o Arterial and arteriovenous lesions	109
	 Superior orbital vein thrombosis 	109
 Role 	in Trauma	110
	Carotid cavernous fistula	111
Conclusion	and summary	113
References	· · · · · · · · · · · · · · · · · · ·	115
-	ımary	
	List of Tables	
<i>Table (1):</i>	fissures and foramina	9
<i>Table</i> (2):	Orbital compartments, contents and pathology	25
<i>Table</i> (3):	Differential diagnosis of orbital inflammatory disease b	
(-)	site	•
<i>Table (4):</i>	The definition of each parameter and its effects on radia	
()	dose	
<i>Table (5):</i>	CT Image Quality Parameters	
Table (6):	Orbital compartments, contents and pathology	
Table (7):	Normal orbital measurements	
1 uvie (/).	1 tornar orditar incasurements	フエ

List of Figures

Figure (1):	Diagram of the orbit shows the 7 bones that contribute to its structure5
Figure (2):	This image of the right orbit shows superficial landmarks, optic canal,
	superior and inferior orbital fissures
Figure (3):	Diagram of right orbit that shows the relationship of entering nerves
	and vessels to the annulus of Zinn
Figure (4):	Diagram of the visual pathway14
Figure (5):	Anatomy of arterial supply, orbit
Figure (6):	Anatomy of the venous drainage, orbit
Figure (7):	Extraocular muscles anatomy
Figure (8):	Diaphragmatic representation of the gross anatomy of the globeat the level
3 ()	of the optic nerve midsagittal section, important foran understanding of
	ocular pathology20
Figure (9):	Normal, CT of the globe. Axial non contrast CT images demonstrate the normal
	appearance of the globe at the level of the optic nerve head (A), lens (B), and the
	superior globe (C). Coronal non-contrast images demonstrate the normal appearance
	of the globe at the level of the lens (D), and the mid (E) and posterior (F) globe. (G)
	Oblique sagittal reconstruction image demonstrates the continuity of the optic nerve
Figure (10).	head with the globe
<i>Figure (10):</i>	The differential diagnosis of OID includes infection, inflammation, and tumor. (a) Orbital cellulitis in patient who presented with acute onset orbital
	inflammation post-foreign body. (b) Idiopathic OID in patient who presented
	with acute onset of orbital inflammation. (c) Thyroid orbitopathy in patient
	who presented with a several months history of increasing proptosis. (d)
	Tumor in region of the lacrimal gland, note S-shaped ptosis
Figure (11):	A 45-year-old woman with significant loss of vision in her right eye despite
8 (/	aggressive treatment with corticosteroids (A). CT-scan (axial and coronal)
	demonstrated thickening of all recti muscles and proptosis on the right side
	(B and C). On histopathology, there is evidence of chronic inflammation (D),
	sclerosing fibrosis(E) and chronic dacryoadenitis (F)
<i>Figure (12):</i>	Dacryoadenitis (A). CT scan shows both lacrimal gland enlargement without
	focal lesion. Myositis (B). CT scan shows enlargement of the left inferior
	rectus muscle involving the tendon sheath. Anterior orbital inflammation (C).
	CT image shows ragged infiltrations involving the anterior soft tissue of the
	right orbit encompassing the right globe
<i>Figure (13):</i>	A male patient with orbital cellulitis with proptosis, ophthalmoplegia, and
	edema and erythema of the eyelids. The patient also exhibited pain on eye
	movement, fever, headache, and malaise
<i>Figure (14):</i>	Coronal CT showing an irregular ill-defined mass in the floor of the right
	orbit involving and not discernible from the inferior and medial recti muscles.
	Incisional biopsy revealed chronic inflammation with marked fibrosis and a
	polyclonal presence of T and B lymphocytes, suggesting a diagnosis of

sclerosing idiopathic orbital inflammation. The lesion neither responded to steroids nor irradiation, and progressed to infiltrate the entire orbit resulting
in loss of light perception
Clinical features of Graves orbitopathy develop as a consequence of expansion of extraocular muscles and adipose tissue. These changes cause a forward displacement of the eyeball that leads to eyelid retraction and exophthalmos. The inflammatory process causes swelling of the periorbital tissues and dysmotility. Impingement of the optic nerves in the apex of the
orbit by the enlarged muscles can cause optic-nerve compression
Cavernous malformation. Photomicrograph (original magnification, ×100; Gomoritrichrome stain) shows blood-filled spaces (*) separated by collagenous septa (arrows) and surrounded by a fibrous pseudocapsule
(arrowheads)
Coronal reconstruction of contrast CT shows bilateral orbital lymphoma: two
homogeneous masses are <i>circled</i> in both superior and lateral quadrants45
Anatomic diagrams of cavernous sinus. A and B, Drawings of coronal (A) and lateral (B) views show structure of cavernous sinus. 1 = carotid artery, 2 = oculomotor nerve, 3 = trochlear nerve, 4 = ophthalmic nerve, 5 = maxillary nerve, 6 = abducens
nerve, 7 = pituitary gland, 8 = sympathetic nerve, 9 = mandibular nerve
CT scan showing retro-bulbar hematoma (red arrow)and proptosis (red arrow head). The optic nerve was compressed by formation of retro-bulbar
hematoma (red arrow)
First generation CT arrangement. Axial slice through patient is swept out by narrow (pencil-width) x-ray beam as linked x-ray tube—detector apparatus scans across patient in linear translation. Translations are repeated at many
angles. Thickness of narrow beam is equivalent to slice thickness
X-Ray transmission measurements. Measurements are obtained at many points during translation motion of tube and detector. x-Ray path corresponding to each measurement is designated a ray, and set of rays measured during translation is designated a view. Views are collected at
many angles (in 1°increments in this example) to acquires sufficient data for
image reconstruction
Reconstruction matrix. Hounsfield envisioned scanned slice as being composed of matrix of small boxes of tissue called voxels, each with attenuation coefficient u. x-Ray transmission measurements (Ni) can be
expressed as sum of attenuation values occurring in voxels along path of ray
for Ni
Second-generation data collection. (A) Transmissions of multiple narrow
beams (3 in this case) were simultaneously acquired by multiple detectors
during each translation. (B–D) Small angle between narrow beam allowed
each detector to acquire complete separate view at different angle60
Third-generation geometry. Time-consuming and mechanically complex translation motion was eliminated by opening x-rays into fan-beam. Large array of detectors measured data across width of fan. Tube and detectors were
rigidly linked and underwent single rotational motion

Figure (25):	Fourth-generation scan geometry. Fixed detector ring in original design was quite large, because tube rotated inside ring. Later designs moved tube outside ring and tilted ring out of way of x-ray beam as x-ray tube swept by
Figure (26):	(Left) SSCT arrays containing single, long elements along z axis. (Right) MSCT arrays with several rows of small detector elements
Figure (27):	Illustration showing the difference between X-ray, standard CT, helical CT and multislice CT. A dramatic reduction of scan acquisition times as well as artifacts is possible with multislice CT where multiple detectors scan multiple slices simultaneously
Figure (28):	Flexible use of detectors in 4-slice MSCT scanners. (A) Groups of four 1.25-mm-wide elements are linked to act as 5-mm-wide detectors. (B) Inner 8 elements are linked in pairs to act as 2.5-mm detectors. (C) Inner, adaptive array elements are linked to act as 5-mmdetectors (1 + 1.5 +2.5) and, together with outer, 5-mm elements, yield four5-mm slices. (D) The 4 innermost elements are linked in pairs to form 2.5-mmdetectors (1 +1.5), which along with the two 2.5-mm detectors, collect data for four 2.5-mm slices. Thinner slices can be combined to form thicker slices for interpretation purposes, if necessary
Figure (29):	Diagrams of various 16-slice detector designs. Innermost elements can be used to collect 16 thin slices or linked in pairs to collect thicker slices66
<i>Figure (30):</i>	Normal anatomy of the bony orbit, globe, extraocular muscles, and optic nerve. (a) 3D image, bone window: smooth contour of the superior and lateral orbital walls (arrows). (b) 3D image, bone window: "spongiform" appearance of the lamina papyracea and orbital floor (arrows). (c) 3D image, bone window: demonstration of the optic canal and superior orbital fissure (arrows). ((d), (e)) 3D image, normal appearance of the extraocular muscles and optic nerve
<i>Figure (31):</i>	Computed tomography sections in axial (A and B) and coronal (C-E) show normal anatomy of bony orbital walls with extraocular muscles (arrow), optic nerve (curved arrow) within hypodense orbital fat (asterisk) and long axis anterior (base) to posterior (apex) is directed lateral to medial
Figure (32):	Clinical, radiological, and pathological images of lacrimal gland inflammation. (a) Photograph of the patient showing left lateral eyelid swelling (arrowhead); (b) coronal head computed tomography (CT) showing a homogenous mass (arrowhead) in the supero-lateral quadrant extending into the posterior left orbit. No bony erosions were noted. (c) Axial head CT showing bilateral, left (arrowhead) greater than right, lacrimal gland enlargements. (d) Pathology of left lacrimal gland biopsy demonstrating granulomas (arrowhead) originating within the acinar epithelium, on a background of heavy chronic inflammatory infiltrate of lymphocytes and plasma cells
Figure (33):	An inflammatory pseudotumor in a 54-year-old woman. A contrast-enhanced CT scan shows an ill-defined enhancing mass in the superior lateral aspect of left eye globe (arrow). Subcutaneous infiltrations (arrowheads) are
	accompanied in the lateral outside of the left orbit80

<i>Figure (34):</i>	(A) A 10 year old boy presented with fever, headache, chemosis, proptosis,
	restricted ocular motility and decreased vision of both eyes. (B and C) A CT-
	scan (axial and cronal) reveled bilateral extraocular muscle thickening
	involving tendons81
<i>Figure (35):</i>	Idiopathic orbital inflammatory syndrome. Coronal reformatted image from
1 18111 (00)	non-enhanced CT in a 50-year-old woman with acute unilateral eye pain
	depicts enlargement of the right medial rectus and superior oblique muscles
	with adjacent fat stranding (arrow)
F: (26)	
<i>Figure (36):</i>	Periorbital cellulitis. Axial contrast-enhanced CT image, obtained in a 22-
	year-old man with swelling around the left eye, demonstrates left periorbital
	soft-tissue edema (arrow) without orbital abnormality82
<i>Figure (37):</i>	orbital cellulitis, left axial post-contrast computed tomography section (A&B
) show eye lid edema (asterisk), enhancing thickened sclera, extra ocular
	muscles (arrow) with sinusitis causing proptosis. Coronal (C), volume
	rendering (d) images shows boggy collection (phlegmon) (curved arrow)with
	displacement of the globe83
<i>Figure (38):</i>	Sub-periosteal abscess due to ethmoid sinusitis. Axial (a) and coronal (b)
3 ()	non-enhanced CT images obtained in a 24-year-old man depict asub-
	periosteal abscess (arrow) along the medial wall of the right orbit, adjacent to
	the pacified ethmoid air cells, with resultant lateral displacement of the
	medial rectus muscle
<i>Figure (39):</i>	CT scans demonstrate infrolateral displacement of the right eye ball by an
rigure (39).	
	orbital abscess (35x10mm) that extends along the medialorbital wall. Mild
F: (40)	right ethmoiditis and no evidence of cavernous sinus thrombosis
<i>Figure (40):</i>	(a) CT scan of the orbit showing proptosis and distortion of the left globe (b)
	CT scan of brain (post contrast) showing an enhancement of the cavernous
	sinus suggestive of thrombosis
<i>Figure (41):</i>	Orbital pseudotumour with optic nerve sheath complex involvement. Axial,
	contrast-enhanced CT image reveals enhancement of left sheath contrasting
	against the central low-density nerve ("tramline" sign), which shows a lucent,
	tubular-shaped area (asterisks). Note enlargement of right lacrimal gland
	(arrow)85
<i>Figure (42):</i>	Comparison of contrast computed tomographic images of patients with (i)
	optic neuritis and (ii) optic perineuritis85
<i>Figure (43):</i>	Coronal and axial scans of the patient with left optic neuritis show an
1 18.11 (10)	enlarged and contrast-enhancing left optic nerve. In the patient with left optic
	perineuritis, there is streaky enhancement of perineural tissue (dirty fat sign)
	which is not evident in optic neuritis
Figure (11).	-
<i>Figure (44):</i>	Orbital pseudotumour with uveoscleral involvement. Coronal contrast
	enhanced CT reveals marked thickening and blurring the margin of left
	uveosclera (asterisks). Notes light thickening of right uveosclera (arrows) 86
<i>Figure (45):</i>	Periscleritic orbital inflammatory disease. Eighty-seven-year-old immune-
	compromised man with left eye pain and ordering indication of "cellulitis".
	A: Axial contrast-enhanced CT shows mild infiltration of the left periorbital
	fat (short white arrow). There is also periscleral edema (long white arrow),
	and subtle high density along the temporal surface of the globe that is

	suppressed contrast-enhanced T1 shows these findings more conspicuously.
	Note that the elevated choroid layer (black arrow) extends anteriorly to the
	region of the ciliary body. Periscleral edema (long white arrow) extending to
	Tenon's capsule is better seen
<i>Figure (46):</i>	Orbital pseudotumour with diffuse involvement. Axial, contrast-enhanced CT
	image reveals thickening of left uveosclera, enhancement with enlargement
	of the extraocular muscles (arrows) and enhancement of the left intra-orbital
	fat(asterisks). These features give rise to the "casting sign"
<i>Figure (47):</i>	a) A patient with right IOID with proptosis and redness of the right eye.(b)
	Axial computer tomographic scan of the same patient demonstrating
	enlargement of medial rectus with surrounding orbital fat intensities
	suggesting orbital inflammatory process.(c) Coronal computer tomographic
	scan of the same patient demonstrating enlargement of medial rectus with
	surrounding orbital fat intensities suggesting orbital inflammatory
	process.(d)Histology of a case of IOID showing diffuse polymorphous
	infiltrate with surrouding fibrous tissue and orbital adipose tissue
<i>Figure (48):</i>	Tolosa-Hunt syndrome; clinically a painful ophthalmoplegia caused by
	inflammatory lesion of the cavernous sinus that is steroid responsive.
	Pathologically this process is similar to orbital pseudotumor Above axial non
	contrast enhanced and axial, coronal and sagittal contrast enhanced CT shows
	a lesion extending from the cavernous sinus into the orbit through the
	superior orbital fissure
<i>Figure (49):</i>	Axial CT scans from two patients with Graves' orbitopathy. A) patient with
	prominent enlargement of the medial and lateral recti muscles. B) patient
	with sever proptosis of both orbits with clear fat tissue augmentation and no
	extraocular muscle involvement
<i>Figure (50):</i>	Coronal CT scans from two patient with Graves' orbitopathy. A) patient with
	symmetric enlargement of the extraocular muscles in both orbits. B) patient
	with asymmetric involvement of the extraocular muscles90
<i>Figure (51):</i>	Axial sections of contrast-enhanced CT scans showing the characteristic
8().	tendon sparing enlargement of both medial recti (as indicated by the short
	arrow), and also a medial ward expansion of both orbits leading to bilateral
	lateral compression of the ethmoids and the ethmosphenoid demonstrating a
	central waist akin to a "Coca Cola bottle"90
<i>Figure (52):</i>	Axial section at mid globe level showing the inter-zygomatic line (labeled
· g ···································	11) and maximum horizontal diameters of the right medial and lateral rectus
	muscles (measurements labeled 4 and 3, respectively). The distance from the
	midpoint of the maximum muscular diameter of the medial (measurement 8)
	and lateral rectus muscles (measurement 7) to the inter-zygomatic line is also
	recorded. Proptosis of the left globe relative to the inter-zygomatic line is
	labeled as measurement 6. Left optic nerve stretch (labeled 13) is measured
	from the retrobulbar optic nerve to the orbital apex point (labeled 1)92
<i>Figure (53):</i>	Intra-conal and intra/extra-conal mass-like lesions within adulthood are
3 ()	represented within this diagram. Main clinical manifestation (CM) and

suggestive of a subchoroidal fluid collection (black arrow); B: Axial fat-

	imaging findings (IF) are summarised. A)First chart shows intra-conal mass-
	like lesions. B) Second chart presents intra/extra-conal mass-like lesions 92
<i>Figure (54):</i>	Cavernous malformation in a 46-year-old man with right-sided headache.
	Sagittal unenhanced CT image demonstrates a round, well-circumscribed
	intraconal mass that causes superior displacement of the optic nerve (*)94
Figure (55):	Cavernous malformation in a 39-year-old woman with painless progressive proptosis. Axial contrast-enhanced CT image shows an enhancing intraconal mass (dot) immediately adjacent to the lateral rectus muscle (black arrows). The mass is causing medial deviation of the optic nerve (white arrow)94
Figure (56):	Hemangiopericytoma in a 47-year-old man with proptosis of the left eye. Axial contrast-enhanced CT image shows a lobulated, slightly and homogeneously enhancing left ethmoid sinus mass that has eroded the medial orbital wall. Note the extraconal extension of the lesion into the orbit and the resultant displacement of the globe
Figure (57):	Recurrent hemangiopericytoma in a 64-year-old woman with visual field deficit and diplopia. (a) Axial contrast-enhanced CT image shows a lobulated and circumscribed enhancing mass at the supero-lateral orbit that causes rightward deviation of the superior rectus (*). (b) Axial CT image obtained 2 years after resection demonstrates that the lesion has recurred with infiltrative borders and bone erosion (arrows)
Figure (58):	Orbital lymphoma in an 81-year-old man with a history of follicular lymphoma who presented with right eye swelling and proptosis. (a) Axial contrast-enhanced CT image shows an ill-defined, enhancing retro-bulbar
Figure (59):	mass that molds to the globe (arrowheads). The optic nerve (*) is encased. (b)Coronal CT image shows that the mass has extended through the infraorbital canal (arrow) but without bone erosion
Figure (60):	CT. It is highlighted the predominant superior lateral quadrant involved. B)CT after contrast shows a slight enhancement lesion within the eyelid 96 A 27 -ys- old woman with a 1-y- history of acute myeloid leukemia presented with painful, reddening of the right orbit. A) post contrast axial CT image shows homogeneously enhancing soft tissue mass with irregular shape in intraconal and extraconal spaces of the right orbit. B) post contrast coronal CT image shows large enhancing mass without adjacent bone involvement in
Figure (61):	the right orbit
Figure (62):	part (arrow in A), then extending through the optic canal with large intra-cranial extension (arrow in B).(Optic nerve glioma)

<i>Figure (63):</i>	A 53 year-old male presented with gradual onset of left sided painless orbital mass with unilateral proptosis and diminished vision. Post contrast MDCT:
	Axial (A) and coronal (B) scans show large well-defined retro-bulbar
	homogeneously enhancing lesion resting on posterior aspect of left eye globe (black arrow on A) and the lesion was seen encircling the left ON (white
	arrow on B on Lt. side. (Optic nerve sheath meningioma)
Figure (64):	Optic nerve sheath meningioma incidentally found in a 50-year-old woman. Axial contrast enhanced CT image demonstrates the tram-track configuration of an enhancing tumor (arrows) surrounding the optic nerve. The mass extends to the orbital apex. The optic nerve itself can be separated from the tumor
Figure (65):	Pleomorphic adenoma. Axial contrast-enhanced CT image of a 59-year-old man who presented with right eye dryness shows ahomogeneously enhancing, well-circumscribed mass at the lacrimal fossa. Rounded indentation at the zygomatic bone (arrow) reflects bone remodeling caused by slow growth of the tumor
Figure (66):	Adenoid cystic carcinoma in a 53-year-old woman who presented with progressive pain and proptosis. Axial contrast-enhanced CT image shows a heterogeneous extraconal mass at the supero-lateral orbit with medial displacement of the optic nerve (*) and marked proptosis. There is erosion of the lateral orbital wall (arrowheads) and extension into the temporal fossa (arrow)
Figure (67):	Lacrimal lymphoma in 76-year- old woman with a palpable mass. Axial contrast enhanced CT images shows an enhancing a lacrimal gland mass which molds to the globe and doesn't erode the orbital wall
Figure (68):	Schwannoma. Axial CT with contrast shows a hypodense, well-defined, extraconal mass with only weak enhancement. This appearance is nonspecific, and is often seen with schwannoma in addition to other benign and malignant masses
Figure (69):	A 26 years-old woman with rhabdomyosarcoma. CT show aggressive mass that deforms the globe and grossly destroys bone (arrow), invading the ethmoid sinus through lamina papyracea
Figure (70):	Orbital involvement in sinonasal malignancy. Coronal computed tomography (A) shows expansile enhancing mass (asterisk) in sinonasal cavity right causing erosion of adjacent orbital bony walls (B) and extension into right orbit (arrow)
<i>Figure (71):</i>	Capillary hemangioma in an 8-week-old girl with a 2-week history of left proptosis. Axial contrast-enhanced CT images show an intensely enhancing intraconal mass in the left orbit
Figure (72):(1	A, B) Cavernous hemangioma right. Axial Computed tomography shows an enhancing, smoothly marginated, rounded soft tissue density intraconal mass (asterisk) causing medial displacement of optic nerve (arrow) in a young female. Punctate focus of hyper-dense calcification (curved arrow) seen within
Figure (73):	Venous lymphatic malformation in an 11-year-old boy with progressive proptosis of the right eye and lateral displacement of the globe. Axial unenhanced CT image demonstrates multiple fluid-fluid levels (arrows)

	within a lobulated, predominantly extraconal lesion, features typical of a
	lymphatic malformation with an intra-lesional hemorrhage
<i>Figure (74):</i>	Photograph obtained with the upper eyelid elevated shows the varix 108
<i>Figure (75):</i>	Bilateral orbital varices in a 27-year-old woman with a sensation of eye
	pressure when stooping to pick up her child. (a) Axial contrast-enhanced CT
	image obtained with the patient at rest shows enhanced and slightly elongated
	soft-tissue lesions (arrows). (b) Axial contrast-enhanced CT image obtained
	during the Valsalva maneuver shows the marked distention typical of orbital
	varices (arrows)
<i>Figure (76):</i>	Contrast-enhanced axial computed tomography shows the nidus of the
	arteriovenous malformation (AVM) (upper left). Sagittal spin-echo magnetic
	resonance imaging shows extra- and intra-orbital components of the AVM
	(upper right). Lateral carotid angiograms show the AVM fed by the left
	ophthalmic (lower left) and meningeal arteries (lower right) and maxillary
	vein drainage (lower right)
<i>Figure (77):</i>	Axial and coronal CT revealing enlarged and thrombosed left SOV (arrow)
	and diffusely enlarged extraocular muscles
<i>Figure (78):</i>	Orbital computed tomography revealed dilated left superior ophthalmic
	vein (White arrow, A) and dilated left cavernous sinus (Black arrow.
	B)109
<i>Figure (79):</i>	CT axial cut (a) shows the fracture floor and medial wall of the right orbit,
3 ()	periorbital hematoma, and subcutaneous emphysema. Coronal cut (b) shows
	right proptosis, orbital roof fracture with displaced fragment, fracture floor,
	right lateral rectus muscle contusion, and herniation of orbital fat into the
	right maxillary sinus. 3D reconstructed image (c) shows the previously
	described fractures. CT, computed tomography
<i>Figure (80):</i>	21-year-old man who sustained head trauma 5 months previously presenting
	with proptosis in left eye secondary to direct carotid-cavernous fistula.
	Correlation between CT angiographic and conventional angiographic
	findings is excellent. Unenhanced CT scan shows dilated left superior
	ophthalmic vein (SOV) and asymmetric engorgement of left cavernous
	sinus(arrow) 112
<i>Figure (81):</i>	Right carotid cavernous fistula following old blunt trauma. CT examination:
	precontrast axial image (a) reveals proptosis of the right eye globe with
	asymmetric cavernous sinuses. Postcontrast axial image (b) reveals tortuous
	dilated engorged right superior ophthalmic vein in the arterial phase of the
	study. Coronal and sagittal reformatted contrast enhanced image (c, d) shows
	dilated tortuous right superior ophthalmic vein. CT, computed tomography

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

ALLA cute lymphoblastic leukemia

AMLA cute myeloid leukemia

AVMs Arteriovenous malformations

CN cranial nerve

CE Contrast Enhancement

cm Centimeter

CT Computed Tomography

CTDI Computed Tomography Dose Index

CCF Carotid Cavernous FistulaCNS Central Nervous SystemDLP Dose Length Product

EOM Extra ocular muscles
GO graves' orbitopathy
HU Hounsfield Unit

IgG4-RD IgG4-Related Disease

IOP Idiopathic orbital pseudotumour

IOS Idiopathic orbital syndrome

ICA InternalCarotid Artery

IV IntravenousKg KilogramkV Kilovolt

LEI Lowest Enhancement Index

mAs Milli Ampere Second

MALT Mucosa-Associated Lymphoid TissueMDCT Multi-Detector Computed Tomography

MIP Maximum Intensity ProjectionMinIP Minimum Intensity Projection

ml Millilitermmol Millimoles

MRI Magnetic Resonance Image

MPR Multi-Planar Reconstruction

MSCT Multi-Slice Computed Tomography

mm Millimeter

MR Magnetic Resonance

MRI Magnetic Resonance Image(s)NF-1 Neurofibromatosis Type 1NF 2 Neurofibromatosis Type 2

OID Orbital Inflammatory Disease
ONSC Optic Nerve Sheath Complex

ON Optic NeuritisOPN Optic perineuritis

p Pitch

PACS Picture Archiving and Communication system

RPE Retinal Pigmented Epithelium

SOV superior ophthalmic vein

s Second

SDCT Single-Detector Computed Tomography

SSCT Single-Slice CT

SS-VR surface-shaded volume rending

sec Second

US UltrasonographyUSG Ultrasonography

W Total Width of the Collimated Beam

VMs venous malformations