Anti-Müllerian Hormone Levels in Patients with Unexplained Recurrent Spontaneous Abortions

A thesis Submitted for partial fulfillment of M.Sc. degree in Obstetrics and Gynecology

By

Ghada Mohammed Nabil Mohammed

M.B.B.CH (2001), Resident at Quesna Central Hospital

UNDER SUPERVISION OF

PROF. KHALED KAMAL ALI

Professor of Obstetrics and Gynecoogy Faculty of Medicine-Ain Shams University

DR. TAMER AHMED EL-REFAIE

Lecturer of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

DR.HALA ABDEL AL AHMED

Lecturer of Clinical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2011

مستويات هورمون الأنتيموليريان في مرضى الأجهاض التلقائي المتكرر الغير مفسر

سالة

مقدمة توطئة للحصول على درجة الماجستير فى أمراض النساء و الولادة مقدمة من

الطبيبة/ غادة محمد نبيل محمد

بكالوريوس الطب والجراحة-جامعة عين شمس (2001) نائب بمستشفى قويسنا المركزى

تحت اشراف

الأستاذ الدكتور/خالد كمال على

أستاذ أمراض النساء والتوليد كلية الطب –جامعة عين شمس

الدكتور/ تامر أحمد الرفاعى

مدرس أمراض النساء و التوليد كلية الطب-امعة عين شمس

الدكتورة/ هالة عبد العال أحمد

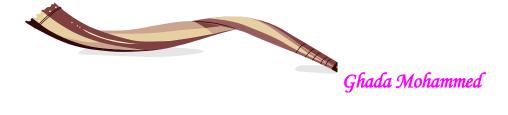
مدرس الباثولوجيا الاكلينيكية كلية الطب-جامعة عين شمس

كلية الطب

جامعة عين شمس

2011

To **Allah** goes my deepest gratitude and thanks for achieving any work in my life.


I would like to express my deepest gratitude to **PROF.** KHALED KAMAL ALI Professor of Obstetrics and Gynecology for dedicating so much of his precious time and effort to help me complete this work. I really appreciate so much his constant guidance and assistance to me.

Indeed, words do fail me when I come to express my unlimited appreciation to **DR. TAMER AHMED EL-REFAIE** lecturer of Obstetrics and Gynecology who was always there to help me, to encourage me and very kindly offer me his valuable remarks in every step of this work.

I am deeply indebted to **DR**. HALA ABDEL AL AHMED Lecturer of clinical pathology for her guidance, patience and unlimited assistance throughout this work.

I am deeply grateful to all the staff members of the Obstetrics and Gynecology Department, Ain Shams University for their help.

Finally, thanks to all my patients who supported me and gave hand to the success of this work.

List of Contents

LIST OF CONTENTS

List of Abbreviations.	Page II
List of Tables.	IV
List of Figures.	VI
Introduction. Aim of the Work.	1 3
Review of Literature: Chapter one: Recurrent spontaneous abortion. Chapter two: Ovarian physiology. Chapter three: Anti-Müllerian hormone in ovarian physiology. Chapter four AMII and Overian dustumation.	4 47 53
Chapter four: AMH and Ovarian dysfunction. Subjects and Methods	78
Results	87
Discussion	104
Summary and Conclusion	117
Recommendations.	120
References.	121
Arabic Summary.	144

List of Abbreviations

LIST OF ABBREVIATIONS

aCL anticardiolipin antibodies
AFC Antral follicle count

ALK Anaplastic lymphoma kinase AMH Anti-Müllerian hormone. AMHRII AMH type II receptor Anti-/32g1 Anti-/32 glycoprotein 1 Anti-beta-2GPI Anti-beta2 glycoprotein I

APAS Antiphospholipid antibody syndrome ARDS Adult respiratory distress syndrome

ASRM American Society for Reproductive

Medicine

AUC Area under curve BV Bacterial vaginosis

CCCT Clomiphene citrate challenge test

CMV Cytomegalovirus

D&C Dilatation and curretage.
DES Di-ethyl stillbisterol

E₂ Estradiol

EGF Epithelial growth factor

FSH Follicle stimulating hormone HIV human immunodeficiency virus

HLA human leukocyte antigen

hMG human menopausal gonadotropin

HSG hysterosalpingogram.

IGF2 insulin-like growth factor 2

Insl3 Insulin-like factor 3
IQR Inter-quartile range
IUFD Intrauterine fetal demise

IUGR Intrauterine growth restriction IVIg Intravenous immunoglobulins

IVIg Intravenous immunogl LAs lupus anticoagulants

LH leuteinizing hormone

LMWH low-molecular-weight heparin

List of Abbreviations

LIST OF ABBREVIATIONS (Cont.)

LPD Luteal phase deficiency

MIS Müllerian inhibiting substance MRI Magnetic resonance imaging

MTHFR Methylene tetrahydrofolate reductase

NK Natural killer

ORTs Ovarian reserve tests

PCOS Polycystic ovarian syndrome
PIH Pregnancy-induced hypertension
RCOG Royal College of Obstetricians

RPL Recurrent pregnancy loss

SLE systemic lupus erythematosus
TGFβ Transforming growth factor-B
TNFα Tumor necrosis factor alpha

VEGF vascular endothelial growth factor

VTE Venous Thromboembolism

List of Tables

LIST OF TABLES

Table	Title	Page
	Tables of review:	
1	Reproductive characteristics associated with poor pregnancy prognosis and recurrent miscarriage	7
2	Miscarriage rates stratified by maternal age at conception	9
3	Prevalence of clinical manifestations in 82 APS patients	19
4	Prognosis for a Viable Birth	46
	<u>Tables of results:</u>	
1	Statistical comparison between patients (group 1) and controls (group 2) regarding age.	88
2	Statistical comparison between patients (group 1) and controls (group 2) regarding haematological data.	88
3	Statistical comparison between patients (group 1) and controls (group 2) regarding fasting blood sugar and Postprandial blood sugar.	92
4	Statistical comparison between patients (group 1) and controls (group 2) regarding FSH and LH.	92
5	Statistical comparison between patients (group 1) and controls (group 2) regarding estradiol values.	94
6	Statistical comparison between patients (group 1) and controls (group 2) regarding prolactin.	94

List of Tables

LIST OF TABLES (Cont.)

Table	Title	Page
7	Statistical comparison between patients	96
	(group 1) and controls (group 2) regarding	
	thyroid function tests.	
8	Statistical comparison between patients	98
	(group 1) and controls (group 2) regarding	
	anticardiolipin antibodies.	
9	Statistical comparison between patients	100
	(group 1) and controls (group 2) regarding	
	AMH.	
10	Correlations between AMH and clinical data,	102
	routine laboratory data and routine hormonal	
	data among patients (group 1).	
11	Correlations between AMH and clinical data,	103
	routine laboratory data and routine hormonal	
	data among controls (group 2).	

List of Figures

LIST OF FIGURES

Figure	Title	Page
	Figures of review:	
1	Number of conceptions expected to reach each stage of pregnancy	6
2	Range of adverse pregnancy outcomes IUGR=intrauterine growth restriction	7
3	Proportion of miscarriages due to fetal aneuploidy by maternal age	9
4	Pathogenic mechanisms of antiphospholipids antibodies	16
5	The chronology of folliculogenesis in the human ovary	49
6	Diagrammatic representation of the histologic architecture of a Graafian follicle	50
7	Follicle dynamics in wild-type, heterozygous and AMH null mouse ovaries.	55
8	Immunohistochemical localisation of AMH in bouin-fixed ovaries of adult mice.	57
9	Action of AMH in the postnatal mouse ovary	58
10	Signaling of AMH through the BMP-like signaling pathway.	60
11	AMH plasma levels in polycystic ovary syndrome (PCOS) patients, cases with functional hypothalamic amenorrhoea (FHA) and premature ovarian failure (POF) cases compared to controls.	70
	Figures of results:	
1	Comparison between patients and control according to Hb and WBCs.	89
2	Comparison between patients and control according to platelets.	90

List of Figures

LIST OF FIGURES (Cont.)

Figure	Title	Page
3	Comparison between patients and control according to PT and PTT.	91
4	Comparison between patients and control according to FBS and PPBS.	93
5	Comparison between patients and control according to FSH and LH.	93
6	Comparison between patients and control according to E2.	95
7	Comparison between patients and control according to prolactin.	95
8	Comparison between patients and control according to T3 and T4	97
9	Comparison between patients and control according to ACA.	99
10	Comparison between patients and control according to lupus anticoagulant.	99
11	Plot of median and IQR of AMH.	101

INTRODUCTION

Abortion is one of the most common complications of pregnancy, occurring in 10--15% of pregnant women. It is defined as pregnancy that fails to progress resulting in death of the fetus before age of fetal viability (20^{th} week (weight of \leq 500 g) in developed countries and 28^{th} week (weight of \leq 1 kg) in developing countries).

Recurrent spontaneous abortion, rate of 2-5%, is defined as ≥ 3 spontaneous abortions. In these women, it is necessary to conduct a comprehensive evaluation so that a plan of care can be outlined (**Daya**, 2004).

Recently, the Practice Committee of the American Society for Reproductive Medicine (ASRM) in January 2008 has defined recurrent pregnancy loss by two or more failed pregnancies. When the cause is unknown, each pregnancy loss merits careful review to determine whether specific evaluation may be appropriate. After three or more losses, a thorough evaluation is warranted. For purposes of determining when evaluation and treatment for infertility or for recurrent pregnancy loss is appropriate, pregnancy is defined as a clinical pregnancy documented by ultrasonography or histopathologic examination (ASRM, 2008).

Antimüllerian (AMH) hormone is a dimeric glycoprotein made up of two monomers attached to each other by disulfide bonds. The 72-kd molecule belongs to the transforming growth factor-B superfamily, which acts on tissue growth and differentiation. Sertoli cells in the male produce AMH, which induces the degeneration of the müllerian ducts and provides the normal formation of the male genital system. Sertoli cells' secretion of AMH continues for a lifetime, but the significance of AMH in adult male is not known. In females, the granulosa cells of the ovary express AMH postnatally. Serum AMH levels are lower in females compared with males. After puberty and onset of menstrual cycles, serum AMH level decreases progressively until it becomes undetectable at around menopause (**Gruijters et al.**, 2003).

Anti-Müllerian hormone can first be detected in human fetal ovary at 36th week in columnar granulosa cells of maturing primary follicles. AMH expression persists in these follicles and is maximally expressed in granulosa cells of preantral and small antral follicles (up to 6 mm). At larger antral follicle stage (>8 mm), its expression diminishes and ultimately becomes undetectable once FSH dependent follicular growth has been initiated. No AMH expression is detected in atretic follicles (**Broekmans et al., 2006**).

Secreted from preantral and early antral follicles, AMH regulates ovarian activity and follicular steroidogenesis. Animal studies have revealed that not only does AMH decrease aromatase activity of FSH-stimulated granulosa cells, but it also decreases the number of leuteinizing hormone (LH) receptors, and regulates testosterone production in theca cells (Cook et al., 2000).

The regulation of oocyte function is through endocrine and paracrine factors. Although the basic hormones causing oocyte growth are FSH and LH, receptors for gonadotropins could not be found on oocytes. The action of gonadotropins on oocytes is probably through mediators like epithelial growth factor (EGF), vascular endothelial growth factor (VEGF), insulin-like growth factor 2 (IGF2). The intrafollicular androgen to estrogen ratio also acts on oocyte function, and AMH plays a major role in the regulation of this ratio (**Fiçiciog et al., 2000**).

The pattern of expression of AMH strongly indicates that AMH has an important role in regulating the number of follicles that grow from the primordial pool. Moreover, AMH might regulate selection of the dominant follicle from the FSH-sensitive follicle cohort (Broekmans et al., 2008).

Serum AMH levels were more robustly correlated with the number of early antral follicles than E_2 , FSH and LH on cycle day 3. This suggests that AMH may reflect ovarian follicular status better than the usual hormone markers (Fanchin et al., 2007).

On the other hand, ovarian reserve is a term used to describe the functional potential of the ovary and reflects the number and quality of oocytes within it (Macklon and Fauser, 2005).

AMH was the best indicator of ovarian reserve with a high sensitivity and specificity. Levels of AMH would predict the number of oocytes with a positive predictive rate of 96%, although it had little value for predicting pregnancy (**Fiçiciog et al., 2000**).

The process of follicular recruitment and selection takes place during the follicular phase of the cycle. Hence, events during the follicular phase may affect the pregnancy outcome. However, most studies on recurrent abortion have focused on the luteal phase of menstrual cycle, and there is limited information on the follicular phase and correlated ovarian reserve in women with recurrent abortions, especially cases with unexplained causes (**Parakash et al., 2006**).

The aim of this work is to:

Evaluate whether follicular phase ovarian reserve of patients with unexplained recurrent spontaneous abortions is defective or not by measuring serum levels of anti-Müllerian hormone during ovarian follicular phase.

<u>CHAPTER ONE</u> Recurrent spontaneous abortion

Abortion is one of the most common complications of pregnancy, occurring in 10-15% of pregnant women. It is defined as pregnancy that fails to progress resulting in death of the fetus before age of fetal viability 20^{th} week (weight of fetus ≤ 500 g) in developed countries and 28^{th} week (weight of fetus ≤ 1 kg) in developing countries). Recurrent spontaneous abortion, rate of 2-5%, is defined as ≥ 3 spontaneous abortions (consecutive or not). In these women, it is necessary to conduct a comprehensive evaluation so that a plan of care can be outlined (**Daya**, **2004**).

Subgroups of recurrent miscarriage:

Based on the pregnancy history, three different groups of women with recurrent miscarriage can be identified, and the risk of subsequent miscarriage among these groups varies (Daya, 2000):

- (i) Primary recurrent miscarriage group. This group consists of women with three or more consecutive miscarriages with no pregnancy progressing beyond 20 weeks' gestation.
- (ii) Secondary recurrent miscarriage group. This group consists of women who have had three or more consecutive miscarriages following at least one pregnancy that has gone beyond 20 weeks' gestation, and may have ended in live birth, stillbirth, or neonatal death.
- (iii) Tertiary recurrent miscarriage group. This group has not been well studied and consists of women who have had at least three miscarriages that are not consecutive but are interspersed with pregnancies that have progressed beyond 20 weeks' gestation (and may have ended in live birth, stillbirth, or neonatal death).

Review of Literature

The current approach of lumping all three groups together makes it difficult to make recommendations regarding optimal evaluation and management.

Risk Factors

Age and success of previous pregnancies are two independent risk factors that affect the loss rate. Many authors have observed an increasing risk of fetal death, in particular spontaneous abortion, with increasing maternal age (Salim et al., 2003). The association of age of the mother and the increased likelihood of chromosomal abnormalities is manifested by the age related increase of trisomy 21 and cytogenetic studies on preimplantation embryos (Salim et al., 2003). Outcome of previous pregnancies is another decisive factor in the risk of pregnancy loss. For young women who have never experienced a loss, the rate of a clinical miscarriage is as low as 5% (Patel et al., 1997).

The risk increases to approximately 30% for women with three or more losses but with a previous live-born infant (Shortle and Jewelewicz, 1989) and up to 50% for women without a live-born infant (Schenker and Margolith, 1982). From these data, it is evident that some women are at particular risk for losing their pregnancy and that there must be an underlying cause for it. Before dealing with possible mechanisms of recurrent miscarriage, it should be remembered that investigations are necessarily confounded by the fact that the same mechanisms as those in sporadic miscarriage can be involved. The same uncertainty applies for the evaluation of any treatment. It is estimated that approximately 33% of women with so called recurrent miscarriage will have had three consecutive sporadic miscarriages by chance (Li et al., 2000).