Synthesis of 2(1H)Pyridine and thiopyridone derivatives. Contrasting between the behavior towards electrophiles

A Thesis

For submitted the degree of Master of Science as partial fulfillment of the requirements of Master of Science in Chemistry

By

Walaa Mohammed Mohammed Raslan (B.Sc 2010)

Supervisors

Prof. Dr. Maher A. El-Hashash

Prof. Organic Chemistry (D.Sc), Faculty of Science Ain-Shams University

Dr. Sameh A. Rizk

Assist. Prof. Organic Chemistry, Faculty of Science Ain-Shams University

Dr. Azza A. El-Badawy

Lecturer Organic Chemistry, Faculty of Science Ain-Shams University

Synthesis of 2(1H)Pyridine and thiopyridone derivatives. Contrasting between the behavior towards electrophiles

Thesis for M.Sc. Degree in Organic Chemistry

Presented by
Walaa Mohammed Mohammed Raslan
B.Sc. 2010

Thesis Advisors	Thesis Approved
Prof. Dr. Maher A. El-Hashash Prof. Organic Chemistry(D.Sc), Fact of Science, Ain-Shams University	ulty
Dr. Sameh A. Rizk Assist. Prof. Organic Chemistry, Fac of Science, Ain-Shams University	culty
Dr. Azza A. El-Badawy Lecturer Organic Chemistry, Faculty Science, Ain-Shams University	/ of

Head of Chemistry DepartmentProf. Dr. Ibrahim H.A. Badr

بَسْمِ اللَّهِ الرَّ حُمَنِ الرَّحِيمِ

نَرِ هَعُ دَرَ جَاتِ مَّن نَّشَآءُ وَهَوِيَّ كُل ِ ذِي عِلْمٍ عَلِيمُ

صَدَقَ اللَّهِ العَظِيمُ

(۲۷: حَعْسَمِيْ)

تشيد مشتقات ٢(ايد) بيريدون وثيو بيرودين ودراسة التباين بين السلوك تجاذ الكواشف إلاكتروفيلية

رسالة مقدمة للحصول على درجة الماجستير في العلوم كجزء مكمل لمتطلبات رسالة الماجستير بكلية العلوم - كيمياء عضوية

مقدمة من ولاء محمد رسلان بكالوريوس ٢٠١٠

تحت اشراف ا.د. ماهر عبد العزيز محمود الحشاش

استاذ الكيمياء العضوية- كلية العلوم - جامعة عين شمس

د. سامح احمد محمد رزق

استاذ مساعد الكيمياء العضوية- كلية العلوم - جامعة عين شمس

د. عزة احمد السيد البدوي

مدرس الكيمياء العضوية- كلية العلوم - جامعة عين شمس

7.17

كليسة العلوم قسم الكيمياء

شــکر

خالص الشكر والتقدير للأساتذة الذين قاموا بالإشراف على الرسالة وهم:

أ.د. ماهر عبد العزيز محمود الحشاش

أستاذ الكيمياء العضوية _ كلية العلوم _ جامعة عين شمس

د. سامح احمد محمد رزق

أستاذ مساعد الكيمياء العضوية - كلية العلوم - جامعة عين شمس

د. عزة احمد السيد البدوى

مدرس الكيمياء العضوية _ كلية العلوم _ جامعة عين شمس

أسم الطالبه : ولاء محمد محمد رسلان

الدرجة العلمية : ماجستير

القسم التابع له : الكيمياء العضوية

أسم الكلية : العلوم

الجامعة : عين شمس

سنة التخرج : ۲۰۱۰

سنة المنح : ٢٠١٦

كليسة العلوم قسم الكيمياء

رسالة ماجستير في الكيمياء العضوية

أسم الطالبه : ولاء محمد محمد رسلان

عنوان الرسالة : تشيد مشتقات ٢ (١يد) بيريدون وثيو بيرودين ودراسة

التباين بين السلوك تجاة الكواشف إلاكتروفيلية

أسم الدرجة : ماجستير العلوم في الكيمياء

لجنة الإشراف:

1. أ.د. ماهر عبد العزيز الحشاش أستاذ الكيمياء العضوية المتفرغ كلية العلوم - جامعة عين شمس

٢.د. سامح احمد محمد رزق أستاذ الكيمياء العضوية المساعد كلية العلوم جامعة عين شمس

الله عن السيد البدوي مدرس الكيمياء العضوية كلية العلوم - جامعة عين شمس

لجنة الحكم:

1. أ.د. ماهر عبد العزيز الحشاش أستاذ الكيمياء العضوية المتفرغ كلية العلوم - جامعة عين شمس

٢-د. سامح احمد محمد رزق أستاذ الكيمياء العضوية المساعد كلية العلوم جامعة عين شمس

٣. أ.د. أحمد يوسف القاضى أستاذ الكيمياء العضوية - كلية العلوم - جامعة الفيوم

ك أ.د. ناهد خير الدين أستاذ باحث المركز القومى للبحوث

الدراسات العليا:

ختم الإجازة: أجيزت الرسالة بتاريخ / ٢٠١٦

موافقة مجلس الكلية موافقة مجلس الجامعة / / ٢٠١٦م / ٢٠١٦م

Acknowledgement

First, I thank my Godness for giving me health to complete this work, also I would like to express my deep appreciation and sincere gratitude to my supervisor Prof. Dr. Maher A. El-Hashash for suggesting this project, valuable guidance, and encouragement during the development of this project.

I would like also to thank Dr. Sameh A. Rizk Assistant Professor of Organic Chemistry, Faculty of Science, Ain Shams University, for his interest, encouragement, and advice during the progress of the work and writing.

I wish to thank Dr. Azza A. El-Badawy for their kind attention.

My deep thanks to my father, mother, brother, sister and my husband.

My deep appreciation to collage of our lab. for their assistance during the whole periods of research.

الى الشجرة التي نموت في ظلها.....ابي و امي

الى البرعم الذي تفتح بأنفاسنا وماء حياتنا أنا وزوجي.....

الى ابننا مؤمن.....

Contents

CHAPTER ONE- INTRODUCTION

No.	Title	Page
	Chalcone	1
1.1	Chalcone synthesis	2
1.1.1	Synthesis of chalcone by ultrasound	3
1.1.2	Synthesis of chalcone by silica	4
1.1.3	Chalcone synthesis with Mannichbases	6
1.3	Other methods for Chalcone synthesis	7
1.3.1	Therapeutic Potential of Chalcones	10
1.4	Regioselective reaction of unsymmetric chalcone	10
1.4.1	Chalcones As Synthon In Chemical Synthesis	12
1.4.2	Heterocyclic compounds	13
	Synthesis of pyridine and thio derivatives	14-23

CHAPTER TWO- RESULT AND DISCUSSION

No.	Title	Page
3.1.1	Synthesis and characterization 3'-benzoyl-4'-phenylspiro [indoline-3,2'-pyrrolidin]-2-one (2).	24
3.1.2	Synthesis and characterization of 4-(4-chlorophenyl) 2-oxo-6-phenyl-1,2,3,4-tetra hydropyridine -3-carbonitrile	26
3.1.3	Synthesis and characterization of 4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-3-substituted1,2-dihydropyridin-2-thione (6-8).	28
3.1.4	Synthesis and characterization of ethyl2-(4-(4-chlorophenyl)-3-cyano-6-(3,4-dimethyl) pyridine-2-	29

	ylthio)acetate (9)	
3.1.5	Synthesis and characterization of Synthesis of 2-(4-(4-chlorophenyl)-3-cyano-6-(3,4-dimethyl phenyl) pyridine-1(2H)-yl)acetohydrazide (11).	31
3.1.6	Synthesis and characterization of 2-Chloro-4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-oxo-pyridine-3-carbonitrile (13).	33
3.1.7	Synthesis and characterization of 4-amino-5-(4-chlorophenyl)-7-(3,4-dimethyl phenyl)-2-oxo-2H-pyrano[2,3-b]pyridine-3-carbonitrile	34
3.1.8	Synthesis and characterization of (E)-N'-benzelidene-5-(4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-oxo-1,2-dihydropyridine-3-yl)-1H-pyrazole-4-carbohydrazide (20	38
3.1.9	Synthesis and characterization of (E)-3-(amino(3-amino-5-oxo-1H-pyrazol-4(5H)-ylidene)methyl)-4-(4-chlorophenyl)-6-(3,4-dimethylphenyl) pyridine-2(1H)-one: (24)	41
3.1.10	Synthesis and characterization of (E)-2-(((4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-oxo-1,2-dihydropyridin-3-yl)(5-oxo-3-(3-phenylthioureido)-1,5-dihydro-4H-pyrazol-4-ylidene)methyl)glycyl)-N-phenylhydrazine-1-carbothioamide (30)	44
3.2	Biological activity.	<i>4</i> 7
3.2.1	Gram positive bacteria.	47
3.2.2	Antioxidant evaluation	51
3.3	Quatum chemical method	56

CHAPTER THREE- EXPERIMENTAL

No.	Title	Page
2.1	Materials.	69
2.2	Instruments.	69
2.3	Synthesis of compounds.	70
2.3.1	Synthesis of Ethyl 4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-oxo-1,2-dihydropyridine-3-carboxylate	71
2.3.2	4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile	74
2.3.3	Synthesis of 2-(4-(4-chlorophenyl)-3-cyano-6-(3,4-dimethyl phenyl) pyridine-1(2H)-yl)acetohydrazide	77
2.3.4	Synthesis of 4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2-hydrazinylnicotinonitrile	79
2.3.5	Synthesis of 5-(4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)2-oxo-1,2-dihydropyridin-3-yl)-1H-pyrazole-4-carbohydrazide	81
2.3.6	Synthesis of (E)-3-amino-2-cyano-N-hydroxy-3-(2-oxo-4,6-diphenyl-1,2-dihydropyridine-3-yl)acrylamide	84
2.3.7	Synthesis of (E)-3-(amino(3-amino-5-oxo-1H-pyrazol-4(5H)-ylidene)methyl)-4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)pyridine-2(1H)-one	86
2.3.10	Synthesis of N-(5-(4-chlorophenyl)-3-cyano-7-(3,4-dimethylphenyl)2-oxo-2H-pyrano[2,3-b]pyridine-4-yl)acetamide	88

	References.	96
--	-------------	----

Chapter One Introduction

Introduction

(1,3-diaryl-2-propen-1-ones) Chalcones are flavonoids found in fruits and vegetables, that attracted attention because of their pharmacological activities such as anti-inflammatory [1-7], antibacterial [8-12], antifungal [13-17], antiviral [18-22],antioxidant [23-32], antineoplastic [33-41]. Most of aromatic rings of natural chalcones are found as hydroxylated. Chalcones, dihydrochalcones and aurones are composed of pigments whose colour changes from yellow to orange in some Coreopsis and Asteraceae taxa species. These compounds are found not only in flowers but also in lots of different tissues of the plants. Free radical scavenging properties of phenol groups of chalcones increased the interest in consumption of plants that included chalcones [18]. Chalcones are included dimer, oligomer, Diels-Alder adducts and different conjugates. At the same time because of being precursors of all of other flavonoid groups, chalcones are very important biosynthetic compounds. Essential property that separates chalcones and dihydrochalcones from the other flavonoids is that an open chain with three carbon molecules binds to A and B ring instead of C ring of flavonoids (Figure 1). Chalcones turn to flavanones with a stereospecific reaction catalyzed by chalcone isomerase enzyme in plants. Close biogenetic and structural relation between chalcones and

Chapter One Introduction

flavanones is the reason for these compounds usually found together in natural products. This is the cause of the identification of chalcone, dihydrochalcone and aurones together with flavanone and dihydroflavonol generally. Chalcones are called as minor flavonoids. But using name of minor flavonoids for chalcones doesn't seem appropriate because of increasing of new species of flavonoids [42]. As flavonoid term, mostly plant pigments are expressed which includes benzo-g-pirone and flavone (Figure 1). Essential compounds of flavonoids include a phenyl group at 2nd position of benzo γ-pyron (chromone) ring system. Flavonoids differ according to size, saturation and the substituents of g-pyrone ring which is called C ring [43]. The ethylenic bond between C2 and C3 of C ring of flavones provides conjugation between A and B ring. In this way the ring structure of flavones becomes stronger than other flavonoids. Although anthocyanidines differ from other flavonoids by losing carbonyl group in C ring, their biological characteristics are similar to other flavonoids. Chalcone derivatives are ring-chain isomers of flavanone derivatives. Aurone derivatives situates in flavonoids by having benzofuranone structure [42,44,45].

Chapter One Introduction

Figure 1. Some flavonoid species

METHOD A:

Chalcone synthesis with the reaction of aromatic aldehyde and acetophenone in the presence of NaOH in EtOH

Chalcone derivatives can be formed by refluxing of acetophenones and aromatic aldehydes in the presence of NaOH in EtOH (5) (Scheme 2). The same reaction can be made at room temperature [46-48]with methanol at room temperature [33,49]. During the reaction, KOH can be used instead of NaOH at room temperature [9,50-54], at 0°C [55,56] or at 5-10°C temperature under nitrogen gas or argon gas [57]. In our department we synthesized a number of chalcones using KOH/MeOH at room temperature, which two of them is original, called (*E*)-1- (3,5-dichloro-2-hydroxyphenyl)-3-m-tolylprop-2-en-1-one and (*E*)-1- (4-Bromophenyl)-3-m-tolylprop-2-en-1-one.