ROLE OF MULTISLICE COMPUTED TOMOGRAPHY IN EVALUATION OF BOWEL DISEASES

Thesis

Submitted in Partial Fulfillment of MD Degree of Radiodiagnosis

By

Rania Mohammed Refaat Abd El Hamid (M.Sc.)

Supervised by

Prof. Dr. Yasser Abd El Azim Abass

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Prof. Dr. Hesham Khalil Dabos

Professor of Tropical Medicine Faculty of Medicine Ain Shams University

Dr. Dalia Zaki Zidan

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University (2009)

دور الفحص بالأشعة المقطعية متعددة المقاطع في تقييم أمراض الأمعاء

رسالة

توطئة للحصول علي درجة الدكتوراة في الأشعة التشخيصية

مقحمة من

الطبيبة/ رانيا محمد رفعت عبد الحميد ماجستير الأشعة التشخيصية

تدت إشراف

الأستاذ الدكتور/ ياسر عبد العظيم عباس

أستاذ الأشعة التشخيصية كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ هشام خليل دبوس

أستاذ الأمراض المتوطنة كلية الطب - جامعة عين شمس

الدكتورة/ داليا زكى زيدان

أستاذ مساعد الأشعة التشخيصية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠٠٩

Acknowledgment

First and above all, all thanks to **Allah** the merciful, the compassionate without his help, I could not finish this work.

Words stand short to express my respect and thanks to **Prof. Dr. Yasser Abd El Azim Abass**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his great support and continuous encouragement which have been the main factors to complete this work.

I would like to express my appreciation for **Prof. Dr. Hesham Khalil Dabos**, Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his precious remarks and back up.

I wish to introduce my deep thanks to Ass. Prof. Dr. Dalia Zaki Zidan, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her help, guidance and accurate supervision.

I would like to offer my great respect and thanks to **Prof. Dr. Thomas Vogl**, Director of Institute of Diagnostic and Interventional Radiology, Frankfurt am Main, Johann Wolfgang Goethe University for offering the help and the maximal facilities to co-operate exchanging our work experiences.

I would like to introduce my great appreciation to all my **professors**, **staff and colleagues**.

I am delighted to express my deep gratitude and cardinal thanks to all members of my family, specially **my parents**, for their love, care and everlasting support. My overwhelming appreciation, love and respect to the greatest dad in my whole world whom I wished to share us these moments.

Rania Refaat

List of Contents

Introduction and aim of the work	1
~ Anatomical Considerations	4
Pathology of Different Bowel Diseases	29
 Techniques of Multislice Computed Tomography in Different Bowel Diseases. 	72
→ Patients and Methods	94
	110
▽ Illustrative Cases	127
→ Discussion	150
Summary and conclusion	176
References	181
Arabic Summary	

List of Figures

Figure	No		P
Figure	1	The duodenum and its relation to the superior mesenteric vessels and the transverse mesocolon.	4
Figure	2	The biliary drainage through the second part of the duodenum.	5
Figure	3	The mesenteric attachment of the small intestine.	7
Figure	4	Arteries of jejunum and ileum.	7
Figure	5	Lymphatic drainage of the small intestine.	8
Figure	6	The structures of the colon including the teniae, haustra and appendices epiploicae.	9
Figure	7	The relations of the sigmoid colon.	10
Figure	8	The peritoneal attachment of the colon.	11
Figure	9	The main branches of the superior and inferior mesenteric arteries.	12
Figure	10	The main branches of the superior and inferior mesenteric veins.	13
Figure	11	The lymph vessels and nodes of the colon.	14
Figure	12	Coronal volume rendered contrast enhanced MSCT image using water as oral contrast demonstrating the duodenum and the jejunum.	15
Figure	13	Axial contrast enhanced MSCT images taken at sequential levels demonstrating different colonic segments in relation to the surrounding structures.	16 &17

Figure	14	Coronal contrast enhanced MSCT images taken at different levels demonstrating different colonic segments in relation to the surrounding structures.	18& 19
Figure	15	Contrast enhanced MSCT axial image showing a normal air filled appendix.	19
Figure	16	Sagittal 3D MSCT image demonstrating the celiac axis and the SMA.	20
Figure	17	Coronal 3D MSCT image demonstrating the jejunal branches, the ileal branches, the ileocolic branch and the middle colic artery.	20
Figure	18	Coronal 3D MSCT image demonstrating the normal terminal branching pattern of the ileocolic artery and the vasa recta.	21
Figure	19	Coronal 3D MSCT scan demonstrating the SMV, the splenic vein and the portal confluence.	21
Figure	20	Sagittal 3D MSCT image demonstrating the IMA and Coronal 3D MSCT image showing the normal branching pattern of the IMA.	22
Figure	21	Coronal 3D MSCT image demonstrating the IMV, the SMV, the splenic vein and the portal confluence.	22
Figure	22	Transverse MSCT enterography images showing the normal appearance of ileum and jejunum.	23
Figure	23	Transverse MSCT enterography image demonstrating the increased attenuation in collapsed normal jejunal loop relative to distended normal jejunal loops.	23
Figure	24	Endoluminal view of the colon showing the teniae coli and the normal haustral folds.	24

Figure	25	Virtual and conventional colonoscopy images of the descending colon.	24
Figure	26	Virtual and conventional colonoscopy images of the transverse colon.	25
Figure	27	Virtual, conventional and colonoscopy images of the cecum.	25
Figure	28	Virtual colonoscopy image of the rectum.	26
Figure	29	Virtual and conventional colonoscopy images of the sigmoid colon.	26
Figure	30	Three dimensional MSCT colonographic and endoscopic images of a labial type of the ICV.	27
Figure	31	Three dimensional MSCT colonographic and endoscopic images of a papillary type of the ICV.	27
Figure	32	Endoscopic and axial 2D MSCT colonographic images of a prominent lipomatous type of the ICV.	28
Figure	33	Tissue Transition Projection (TTP) or (virtual double contrast enema) of the entire colon and the distal terminal ileum.	28
Figure	34	Drawing (coronal view) shows the locations and directions of internal hernias of the upper and lower abdominal peritoneal cavity.	41
Figure	35	Longitudinal and cross sectional diagrams illustrating a typical transient type intussusception.	42
Figure	36	Drawing shows marked colonic wall thickening and mucosal plaques in pseudomembranous colitis.	48
Figure	37	Drawing shows the significant wall thickening that involves the cecum in patients with typhlitis.	49

Figure	38	Drawing shows an appendicolith that obstructs the appendiceal lumen resulting in dilatation of the appendix and wall thickening.	51
Figure	39	Diagram showing the adenoma to carcinoma sequence.	53
Figure	40	Drawing illustrates the morphologic variations of colon carcinoma.	55
Figure	41	Diagram showing the criteria for T staging.	56
Figure	42	Transverse MSCT image, coronal reformatted image of same area and endoluminal MSCT colonographic view showing a haustral fold in sigmoid colon.	61
Figure	43	Endoluminal MSCT colonographic view and transverse MSCT images in different window settings showing a 24 mm lipoma in hepatic flexure.	62
Figure	44	Antegrade and retrograde 3D endoluminal MSCT images showing a sessile 9 mm polyp located behind a haustral fold.	63
Figure	45	Three dimensional endoluminal MSCT image and supine contrast material enhanced CT scan showing the appearance of the stool.	64
Figure	46	Three dimensional endoluminal MSCT images showing the different appearance between a diverticulum and a polyp.	64
Figure	47	Transverse MSCT, endoluminal MSCT colonographic and conventional colonoscopy images showing small polypoidal lesion in the splenic flexure.	65
Figure	48	Three dimensional endoluminal MSCT image and unenhanced MSCT scan showing an impacted colonic diverticulum which produces an intraluminal filling defect.	66

Figure	49	MSCT enterogram of patient with active Crohn's disease.	6
Figure	50	MSCT enterogram shows mural hyperenhancement of active jejunal Crohn's disease.	7
Figure	51	MSCT enterogram demonstrates mural stratification.	7
Figure	52	MSCT enterogram shows engorged vasa recta producing the comb sign involving two ileal loop. 6	7
Figure	53	Transverse MSCT image in a patient with ulcerative colitis. 6	8
Figure	54	Transverse MSCT image in a patient with pseudomembranous colitis. 6	9
Figure	55	Axial enhanced MSCT image showing distended appendix with mural hyperenhancement and stratification, periappendiceal fat stranding and focal thickening of the base of the cecum. 6	9
Figure	56	Unenhanced MSCT image shows appendicolith, periappendiceal fat stranding, lateral conal fascia thickening and periappendiceal fluid.	0
Figure	57	MSCT with oral contrast material shows cecal apical wall thickening.	0
Figure	58	Axial enhanced MSCT image showing cecal wall thickening around appendiceal orifice with the arrowhead sign.	1
Figure	59	Coronal volume rendered contrast enhanced MSCT image showing the normal proximal small bowel.	3
Figure	60	Coronal reformatted MSCT images using different oral contrast agents.	4

Figure	61	Coronal volume rendered contrast enhanced MSCT image with window level and window width simulating a standard small bowel series.	75
Figure	62	MSCT Enteroclysis image.	77
Figure	63	Fecal tagging showing the residual stool in the ascending and descending colon tagged.	80
Figure	64	Computer generated electronic accented image showing fecal tagging with orally administered barium.	81
Figure	65	Standard enema bag containing approximately 3 L of carbon dioxide for manual insufflation.	81
Figure	66	Automated colonic insufflator.	82
Figure	67	Display of computer calculated centerline for automatic flythrough navigation during workstation interpretation of VR data sets.	84
Figure	68	Coronal reformatted MSCT image lung window settings shows gas filled and distended loops of small bowel and colon with incompetent ileocecal valve.	84
Figure	69	Three dimensional threshold rendered endoluminal images of the colon showing the haustral folds.	85
Figure	70	Three dimensional volume rendered CT colonography endoluminal images of normal colon showing the colonic folds.	86
Figure	71	Schematic shows areas in black that are missed in conventional 3D view.	86
Figure	72	Tissue transition projection of the whole colon resembling the barium enema.	87
Figure	73	Panoramic endoscopy display.	87

Figure	74	Virtual dissection view of the colon.	88
Figure	75	Virtual dissection image of MSCT colonography showing a featureless gap.	89
Figure	76	Unfolded cube display of the colon.	89
Figure	77	A novel method of display provides a colon unwrapping.	90
Figure	78	Translucency rendering applied to a 3D image.	91
Figure	79	Coronal reformatted and axial enhanced pelviabdominal MSCT images of diverticulitis without exclusion the possibility of associated colonic malignancy.	127
Figure	80	MSCT colonography images of different displays showing diverticular disease of the colon.	129& 130
Figure	81	Coronal reformatted images of enhanced pelviabdominal MSCT of pseudomembranous colitis.	131
Figure	82	Coronal reformatted and axial images of enhanced pelviabdominal MSCT of ulcerative colitis of the rectosigmoid colon.	132
Figure	83	MSCT colonography images of different displays showing malignant splenic flexure mass.	133&134
Figure	84	MSCT colonography images of different displays showing a malignant rectosigmoid mass with a small (about 5 mm) polyp at the descending colon.	135&136
Figure	85	MSCT colonography images of different displays showing chronic appendicitis.	138&139
Figure	86	MSCT axial images of enhanced pelviabdomen showing mesenteric ischemia complicated with large bowel gangrene.	140

Figure	87	MSCT of the abdomen axial images showing colocolic intussusception.	141
Figure	88	MSCT angiography of the abdomen in 2D MPR and 3D rendered images showing an abdominal aortic aneurysm involving the origin of the inferior mesenteric artery.	142&143
Figure	89	MSCT enterography axial images of active stage of Crohn's disease.	144
Figure	90	MSCT axial images of the pelviabdomen showing intestinal lymphoma.	145
Figure	91	Unenhanced MSCT of the abdomen and pelvis showing Crohn's disease complicated with fibrostenosis of the ileocecal valve.	146&147
Figure	92	MSCT enhanced axial and coronal reformatted images of abdomen and pelvis showing parastomal hernia with small bowel obstruction.	148
Figure	93	MSCT enhanced axial images showing ileal adenocarcinoma on top of Peutz-Jegher syndrome.	149

List of Tables

Table	1	The morphological difference between jejunum
Table	2	and ileum. The key clinical features of ulcerative colitis and
		Crohn's disease. 47
Table	3	Modified Astler-Coller-Dukes Classification for
T. 1.1.	4	Clinical Staging of Colorectal Carcinoma. 56
Table	4	The confirmatory procedures used as a gold standard tests in this study. 108
Table	5	Numbers and classifications of patients of colon
Table	3	disease group.
Table	6	Numbers and classifications of patients of small
100010	Ü	bowel disease group.
Table	7	Number of patients of diverticular disease of the
		colon with the techniques done. 111
Table	8	Comparison between the different display
		techniques of MSCT colonography in the patients
7 2.1.1	0	of diverticular disease of the colon.
Table	9	Pelviabdominal MSCT findings in the patients of
Table	10	complicated diverticular disease of the colon. 113 MSCT colonography findings in the patients of
1 able	10	MSCT colonography findings in the patients of colonic malignancy. 115
Table	11	Comparison between the different display
14610		techniques in the patients of colonic polyps. 116
Table	12	MSCT findings of the patients of inflammatory
		disease of the colon. 118
Table	13	MSCT findings of the surgically proven
		appendicitis with the number of the patients. 119
Table	14	MSCT findings of the patients of the
		miscellaneous subgroup of the colonic diseases
T. 1.1.	1.5	group. 120
Table	15	MSCT technique and findings of the patients of
		Crohn's disease subgroup of the small bowel diseases group with the disease stage. 121
Table	16	MSCT findings of the patients of lymphoma
Lubic	10	subgroup of the small bowel disease group. 122
Table	17	MSCT findings of the patients of the small bowel
		obstruction subgroup of the small bowel disease
		group. 123

Introduction

Imaging the small bowel is challenging technically. Because the organ is long and serpentine, a large field of view and a large volume are needed to display in entirety. Another problem for imaging is motion, both intrinsic motion of peristalsis and the positional changes caused by breathing. These two motion patterns can be additive and lead to a complex movement of individual bowel loops, making their tracing very difficult. In addition, because small bowel diseases have a low incidence, their appearance is less well known and there is an increased risk of missing them. Ever most of the common diseases in the small bowel, early changes are subtle making their diagnoses difficult (*Patak et al.*, 2005).

Small bowel follow through (SBFT) and enteroclysis are widely used for small bowel imaging and barium enema for large bowel imaging; however, these examinations provide only indirect information about the bowel wall and surrounding structures and prone to problems caused by overlapping bowel loops. Although computed tomography enteroclysis (CT E) profits from excellent distension of the entire small bowel and precise evaluation of the entire small bowel and precise evaluation of the extent of extraluminal disease, it has the major drawbacks of invasiveness and high radiation exposure. Recently, the role of wireless capsule endoscopy to assess small bowel diseases has been reported. However problems with technique include capsule obstruction by bowel strictures and battery failure in prolonged transit and also the false negative results if there is rapid peristalsis at the lesion site or if there is bowel angulation at a lesion that impairs the camera view (Hong et al., 2006 a).

Conventional colonoscopy potentially permits total colon evaluation but sometimes fails to show the entire colon in about 5% of cases owing to difficulties in reaching the right side; moreover, it does not allow evaluation of the liver and other organs outside the colon (*Neri et al.*, 2002).