دراسات على انتاج الخضروات في البيئات البديلة بالزراعات الحضرية

رسالة مقدمة من

دينا محمد سلامه أحمد

بكالوريوس علوم زراعية (خضر) ، جامعة القاهرة ، 2006 ماجستير علوم زراعية (الزراعة الصحراوية) ، جامعة عين شمس،2010

للحصول على درجة دكتور الفلسفة فى العلوم الزراعية (النظم الزراعية المتطورة للمناطق الجافة)

معهد الدراسات العليا والبحوث للزراعة فى المناطق القاحلة كلية الزراعــة جامعة عين شمس

جامعة عين شمس كلية الزراعة

رسالة دكتوراة

أسم الطالبة: دينا محمد سلامه أحمد

عنوان الرسالة: دراسات على إنتاج الخضروات فى البيئات البديلة بالزراعات الحضرية الحضرية المتطورة الفلسفة في العلوم الزراعية (النظم الزراعية المتطورة للمناطق الجافة)

تحت إشراف:

د. ممدوح محمد فوزي عبد الله

أستاذ الخضر المتفرغ، قسم البساتين، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. أسامة أحمد على البحيرى

أستاذ الخضر، قسم البساتين، كلية الزراعة، جامعة عين شمس

د. محمد رضا حسین شفیق

أستاذ باحث الخضر المتفرغ ، قسم بحوث الخضر ، المركز القومي للبحوث

تاريخ التسجيل 17/ 10 /2011

الدراسات العليا

أجيزت الرسالة بتاريخ 2015 /4/ 9

ختم الإجازة

موافقة الجامعة / / 2015 موافقة مجلس الكلية // 2015

STUDIES ON PRODUCTION OF VEGETABLES IN SUBSTITUTE MEDIA IN URBAN AGRICULTURE

By

DINA MOHAMED SALAMA AHMED

B.Sc. Agric. Sc. (Vegetable), Cairo University, 2006 M.Sc. Agric. Sc. (Agriculture in Desert), Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment

of

the requirements for the degree of **DOCTOR OF PHILOSOPHY**

in Agricultural Science (Advanced Agriculture Systems for Arid Land)

Arid Land Agricultural Graduate Studies and Research Institute
Faculty of Agriculture
Ain Shams University

STUDIES ON PRODUCTION OF VEGETABLES IN SUBSTITUTE MEDIA IN URBAN AGRICULTURE

By

DINA MOHAMED SALAMA AHMED

B.Sc. Agric. Sc. (Vegetable), Cairo University, 2006 M.Sc. Agric. Sc. (Agriculture in Desert), Ain Shams University, 2010

Under The Supervision of:

Dr. Mamdouh Mohamed Fawzy Abdallah

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Usama Ahmed Ali El- Behairy

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Reda Hussein Shafik

Research Prof. Emeritus of Vegetable, Department of Vegetable Research, National Research Center

ABSTRACT

Dina Mohamed Salama Ahmed: Studies on vegetables productionin substitute media in urban agriculture. Unpublished Ph.D. Thesis, Arid Land Agricultural Graduate Studies and Research Institute, Faculty of Agriculture, Ain Shams University, 2015.

This study was carried out during 2011, 2012 and 2013 for producing vegetable sprouts (Turnip, red radish and onion) and vegetable crops (Turnip, red radish, green onion, jews mallow and snap bean) using four growing media in wooden plot during winter and summer seasons. The wooden plot located in the kitchen experimental farm module in the Vegetables Experimental Farm of the Faculty of Agriculture, Ain Shams University, to study the effect of growing media on growth, yield characters and nutritional value of vegetable sprouts and vegetable crop products.

Turnip and red radish sprouts at cotyledon stage grown in clay and clay mixture media recorded higher sprout yield with good source of protein, fiber, phenols, flavonoids and vitamin C in addition to decrease lipid and sugars content. Three weeks old onion sprouts grown in peatmose + vermiculate medium were rapid in growth with taller sprout length, longer white base length, taller sprout green tops with higher sprout yield and higher value of carbohydrates, energy, lipid, flavonoids, anthocyanin and potassium.

The best plant growth and yield characters of vegetable crop products (Turnip, red radish, green onion and snap bean) significantly increased in plants produced in peatmoss + vermiculate. On the contrary, jews mallow plants grown in clay medium produced the highest plant growth and yield. Chemical content of vegetable crop products varied depending on the type of plant and medium used. Also, vegetation for crops in different growing media was effective in

decreasing the heat refraction for plants and soil as compared to air temperature at all growth stages.

It can be generally concluded that the clay media can be recommended for producing sprouts (turnip and red radish) and jews mallow plants, while peatmoss + vermiculate medium can be recommended for producing onion bud sprouts and vegetable crop products (Turnip and red radish roots, green onion plant and snap bean pods) in the kitchen garden.

Keywords: Sprouts, Turnip, Red radish, Green onion, Jews mallow, Snap bean, Growing media, Nutritional value.

ACKNOWLEDGEMENT

Praise and thanks be to **ALLAH**, the most merciful for directing me to the right way and provides me all I have.

Very special thanks to **Prof. Dr. Mamdouh Mohamed Fawzy Abdallah,** Professor Emeritus of Vegetable, Horticulture Dept., Faculty of Agriculture, Ain Shams University, for his supervision, reviewing the manuscript and fruitful discussion during this work. He was an excellent supervisor, he always kept eyes on the progress of my work, gave me stimulating suggestions and he was at all times available when I needed his help and advice. It a great honor to work under his supervision.

I would like to express my deepest gratitude to **Prof. Dr. Usama Ahmed Ali El- Behairy,** Professor of Vegetable, Horticulture Dept., Faculty of Agriculture, Ain Shams University, for his supervision, reviewing the manuscript, for the patient guidance, encouragement and advice, he has provided throughout my time as his student. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly.

I am indebted and sincere thanks to **Prof. Dr. Mohamed Reda Hussein Shafeek,** Research Professor Emeritus of Vegetable, Vegetable Research Dept., National Research Center, for his supervision, reviewing the manuscript, for his constructive guidance and help during the preparation of this work.

My deeply thanks to **Prof. Dr. Hamed Maher El-Abagi,** Research Professor Emeritus of Vegetable, Vegetable Research Dept., National Research Center, for his kind encouragement and support me during this work.

I am grateful to **Prof. Dr. Magda Hafez** Research Professor Emeritus of Vegetable, Vegetable Research Dept., National Research Center, for her kind encouragement and support me during this work.

Thanks are due to all members of Arid land Agricultural graduate studies and Research Institute and Horticulture Dept., Faculty of Agriculture, Ain Shams University. And also, Vegetable Research Dept., National Research Center, for their help and cooperation.

By all means and words in the world, summarize as my true love to all my family especially my parents **Prof. Dr. Mohamed Salama Ahmed** Professor Researcher, Botany Dept., National Research Center and **Prof. Dr. Fayza Mahmoud El-wakeel** Professor of Islamic and Coptic monuments, Faculty of Archaeology, Cairo University for their great support and enhancing me throughout my life.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VIII
I. INTRODUCTION	1
II. REVIWE OF LITERATURE	5
2.1. Vegetable sprout production.	7
2.1.1.Turnip seed sprouts.	8
2.1.1.1. Sprout growth	9
2.1.1.2. Yield	10
2.1.1.3. Chemical compositions	10
2.1.2. Red radish seed sprouts.	12
2.1.2.1. Sprout growth	13
2.1.2.2. Yield	13
2.1.2.3. Chemical compositions	14
2.1.3.Onion bud sprouts.	16
2.1.3.1. Sprout growth	16
2.1.3.2. Yield	17
2.1.3.3. Chemical compositions	17
2.2. Turnip, red radish and green onion crop production in	18
the winter season.	
2.2.1. Turnip crop.	18
2.2.1.1. Plant growth	19
2.2.1.2. Yield	20
2.2.1.3. Chemical compositions	20
2.2.2. Red radish crop.	22
2.2.2.1. Plant growth	22
2.2.2.2. Yield	23
2.2.2.3. Chemical compositions	23
2.2.3. Green onion plant.	25
2.2.3.1. Plant growth	26
2.2.3.2. Yield	27
2.2.3.3. Chemical compositions	27

2.3. Subsequent jews mallow and snap bean crop production	20
in the summer season.	29
2.3.1. Jews mallow plants	29
2.3.1.1. Plant growth	30
2.3.1.2. Yield	30
2.3.1.3. Chemical compositions	31
2.3.2. Snap bean crop	33
2.3.2.1. Plant growth	34
2.3.2.2. Yield	35
2.3.2.3. Chemical compositions	36
III. MATERIALS AND METHODS	39
IV. RESULTS AND DISCUSSION	51
4.1. Effect of growing media on turnip, red radish and onion	
sprouts growth, yield characters and chemical	51
analysis:	
4.1.1. Effect on turnip and red radish seed sprouts.	51
4.1.2. Effect on onion bud sprouts.	53
4.1.3. Effect on sprouts chemical analysis:	55
4.1.3.1. Effect on chlorophyll a, chlorophyll b, total	
chlorophyll and carotonoids (mg/g fresh	55
weight).	
4.1.3.2. Effect on proximate analysis of sprouts.	57
4.1.3.3. Effect on other sprouts phytochemicals.	61
4.1.3.4. Effect on sprouts minerals content.	68
4.2. Effect of growing media on winter turnip, red radish and	70
green onion plant growth, yield characters and chemical	
analysis:	70
4.2.1. Effect of growing media on turnip plant: 4.2.1.1.Effect on turnip plant growth and	70
4.2.1.1.Effect on turnip plant growth and yield characters.	70
4.2.1.2. Effect of growing media and turnip plant growth	73
stages on heat refraction.	73
4.2.1.3.Effect of growing media on turnip plant chemical	79
analysis:	. ,
4.2.1.3.1. Effect on chlorophyll a, chlorophyll b, total	79
chlorophyll and carotonoids (mg/g fresh	

	1 .	
we1	α h1	١.
W CI	gm	l).

4.2.1.3.2.Effect on proximate analysis	82
4.2.1.3.3. Effect on other phytochemicals	87
4.2.1.3.4.Effect on minerals content	94
4.2.2. Effect of growing media on red radish plant:	100
4.2.2.1.Effect on red radish plant growth and yield characters.	100
4.2.2.2. Effect of growing media and red radish plant	
growth stages on heat refraction.	102
4.2.2.3.Effect of growing media on red radish plant	100
chemical analysis:	109
4.2.2.3.1. Effect on chlorophyll a, chlorophyll b, total	
chlorophyll and carotonoids (mg/g fresh	109
weight).	
4.2.2.3.2. Effect on proximate analysis.	112
4.2.2.3.3. Effect on other phytochemicals.	116
4.2.2.3.4. Effect on minerals content.	123
4.2.3. Effect of growing media on green onion plant:	128
4.2.3.1.Effect on green onion plant growth and yield	128
characters.	
4.2.3.2.Effect of growing media and green onion plant	134
growth stages on heat refraction.	
4.2.3.3.Effect of growing media on green onion plant	142
chemical analysis.	
4.2.3.3.1.Effect on chlorophyll a, chlorophyll b, total	142
chlorophyll and carotonoids (mg/g fresh weight).	
4.2.3.3.2.Effect on proximate analysis.	145
4.2.3.3.3.Effect on other phytochemicals.	147
4.2.3.3.4.Effect on minerals content.	152
4.3.Effect of growing media on summer jews mallow and snap	155
bean plant growth, yield characters and chemical analysis.	
4.3.1. Effect of growing media on jews mallow plant:	155
4.3.1.1.Effect on jews mallow plant growth and yield	155
characters.	
4.3.1.2.Effect of growing media and jews mallow plant	158

growth stages on heat refraction.	
4.3.1.3.Effect of growing media on jews mallow plant	165
chemical analysis.	
4.3.1.3.1. Effect on chlorophyll a, chlorophyll b, total	165
chlorophyll and carotonoids (mg/g fresh	
weight).	
4.3.1.3.2.Effect on proximate analysis.	168
4.3.1.3.3. Effect on other phytochemicals.	170
4.3.1.3.4.Effect on minerals content.	175
4.3.2. Effect of growing media on snap bean plant:	176
4.3.2.1. Effect on snap bean plant growth and yield	176
characters.	
4.3.2.2. Effect of growing media and snap bean plant growth	180
stages on heat refraction.	100
4.3.2.3.Effect of growing media on snap bean plant	186
chemical analysis.	100
4.3.2.3.1. Effect on chlorophyll a, chlorophyll b, total	186
chlorophyll and carotonoids (mg/g fresh	
weight).	
4.3.2.3.2.Effect on proximate analysis.	189
4.3.2.3.3. Effect on other phytochemicals.	195
4.3.2.3.4.Effect on minerals content.	202
V. SUMMARY AND CONCLUTION	209
VI. REFERENCES	219
ARABIC SUMMARY	

LIST OF TABLES

No.		Pages
1.	Chemical analysis of the experimental clay and sand.	40
2.	Effect of growing media on sprout growth and yield characters of turnip and red radish seed sprouts and onion bud sprouts (Combined data of two seasons).	52
2.	Continue	53
3.	Effect of growing media on proximate analysis of turnip and red radish seed sprouts and onion bud sprouts (Combined data of two experiments).	59
4.	Effect of growing media on other phytochemicals of turnip and red radish seed sprouts and onion bud sprouts (Combined data of two seasons).	64
5.	Effect of growing media on minerals of turnip and red radish seed sprouts and onion bud sprouts (Combined data of two seasons).	69
6.	Effect of growing media on turnip plant growth and yield characters 45, 60 and 75 days after seeds sowing (Combined data of two seasons).	72
7.	Effect of growing media on proximate analysis of turnip leaves and roots (Combined data of two seasons).	85
8.	Effect of growing media on other phytochemicals of turnip leaves and roots (Combined data of two seasons).	90
9.	Effect of growing media on minerals of turnip leaves and roots (Combined data of two seasons).	98
10.	Effect of growing media on red radish plant growth and yield characters 45, 60 and 75 days after seeds sowing (Combined data	101

or two seasons,	of	two	seasons)
-----------------	----	-----	----------

11. Effect of growing media on proximate analysis of red radish 115 leaves and roots (Combined data of two seasons). 12. Effect of growing media on other phytochemicals of red radish 122 leaves and roots (Combined data of two seasons). 13. 127 Effect of growing media on minerals of red radish leaves and roots (Combined data of two seasons). 14. Effect of growing media on green onion plant growth characters 131 45, 60 and 75 days after sets sowing (Combined data of two seasons). 15. Effect of growing media on green onion plant yield characters 45, 133 60 and 75 days after sets sowing (Combined data of two seasons). 16. Effect of growing media on proximate analysis of green onion 147 plant (Combined data of two seasons). 17. Effect of growing media on other phytochemicals of green onion 150 plant (Combined data of two seasons). 18. Effect of growing media on minerals of green onion plant 154 (Combined data of two seasons). 19. Effect of growing media on plant growth and yield characters of 156 jews mallow plant after 30 days from planting (Combined data of two seasons). 20. Effect of growing media on plant growth and yield characters of 157 jews mallow plant after 55 days from planting (Combined data of two seasons). 21. Effect of growing media on proximate analysis of jews mallow 169 plants (Combined data of two seasons). 22. Effect of growing media on other phytochemicals of jews mallow 171 plant (Combined data of two seasons).

23.	Effect of growing media on minerals of jews mallow plant	175
	(Combined data of two seasons).	
24.	Effect of growing media on plant growth characters of snap bean	177
	pods after 45 and 60 days from seeds sowing (Combined data of	
	two seasons).	
25.	Effect of growing media on yield characters of snap bean pods	179
	(Combined data of two seasons).	
25.	Continue	179
26.	Effect of growing media, harvest date and their interaction on	191
	proximate analysis of snap bean pods (Combined data of two	
	seasons).	
26.	Continue	193
27.	Effect of growing media, harvest date and their interaction on	198
	other phytochemicals of snap bean pods (Combined data of two	
	seasons).	
27.	Continue	200
20		20.4
28.	Effect of growing media, harvest date and their interaction on	206
	minerals of snap bean pods (Combined data of two seasons).	

LIST OF FIGURES

No.		Pages
1.	Effect of growing media on chlorophyll a (A), chlorophyll	56
	b (B) and total chlorophyll (C) (mg/g fresh weight) of	
	turnip, red radish and onion bud sprouts.	
2.	Effect of growing media on carotenoids (mg/g fresh	57
	weight) of turnip, red radish and onion bud sprouts.	
3.	Maximum absolute plant heat refraction (°C) 45 (A), 60	74
	(B) and 75 (C) days after turnip seeds sowing in growing	
	media.	
4.	Maximum absolute soil surface heat	76
	refraction (°C) under turnip plant 45 (A), 60 (B) and 75 (C)	
	days after seeds sowing in four growing media.	
5.	Maximum absolute soil temperature (°C) at 15 cm depth 45	79
	(A), 60 (B) and 75(C) days after turnip seeds sowing in	
	growing media.	
6.	Effect of growing media and growth stage on chlorophyll a	81
	(A), chlorophyll b (B) and total chlorophyll (C) (mg/g	
	fresh weight) of turnip plant.	
7.	Effect of growing media and growth stage on carotenoids	82
	(mg/g fresh weight) of turnip plant.	
8.	Maximum absolute plant heat refraction (°C) 45 (A), 60	104
	(B) and 75 (C) days after red radish seeds sowing in	
	growing media.	
9.	Maximum absolute soil surface heat	106
	refraction (°C) under red radish plant 45 (A), 60 (B) and 75	
	(C) days after seeds sowing in growing media.	