

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Rehabilitation of RC Beams Using Vacuum Assisted Resin Transfer Molding

By Eng. Mohamed Kohail M. Fayez

B.Sc. Civil Engineering Ain Shams University, 2003

A Thesis

Submitted in Partial Fulfillment for Requirements of the Degree of Master of Science in Structural Engineering.

Supervisors

Prof. Dr. Samir Hasan Okba

Professor of Properties and Testing of Materials
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Prof. Dr. El-Sayed Abdel Raouf Nasr

Professor of Properties and Testing of Materials Structural Engineering Department. Faculty of Engineering Ain Shams University

Dr. Amr Ibrahim Ibrahim Helmy

Associate Professor Structural Engineering Department Faculty of Engineering Ain Shams University

Cairo 2009

Ain Shams University Faculty of Engineering Structural Engineering Department

Rehabilitation of RC Beams Using Vacuum Assisted Resin Transfer Molding

By Eng. Mohamed Kohail M. Fayez

B.Sc. Civil Engineering Ain Shams University, 2003

A Thesis

Submitted in Partial Fulfillment for Requirements of the Degree of Master of Science in Structural Engineering.

Referees Committee:

Prof. Dr. Gouda Mohamed Mohamed Ghanem Professor of Properties and Testing of Materials, Civil Engineering Department,	
Faculty of Engineering, Helwan University	
Prof. Dr. Amr Ali Abdelrahman Professor of Concrete Structures, Structural Engineering Department, Faculty of Engineering, Ain Shams University	
Prof. Dr. Samir Hasan Okba	
Professor of Properties and Testing of Materials,	
Structural Engineering Department,	
Faculty of Engineering, Ain Shams University	
Dr. Amr Ibrahim Ibrahim Helmy Associate Professor,	
Structural Engineering Department,	
Faculty of Engineering, Ain Shams University	

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in

partial fulfillment of the requirements for the degree of Master of Science

in Civil Engineering (Structural).

The work included in this thesis was carried out by the author at

reinforced Properties and Testing of Materials laboratory of the faculty of

engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification

at any other university or institute.

:

Date

: 19 / 09 / 2009

Name

Mohamed Kohail Mohamed Fayez

Signature

Mohamed Kohail

ACKNOWLEDGMENT

I would like to express my deepest thanks and confession of favor to Professor Dr. Samir Hasan Okba for his valuable advice, continuous interest and for his reviewing of manuscript.

Great gratitude and sincere appreciation go to Professor. Dr. El-Sayed Abdel-Raouf Nasr, for his direct supervision, valuable advice, continuous support and for his reviewing of manuscript.

Special thanks go to Dr. Amr I.I. Helmy for his friendly help, valuable assistance, his guidance, patience, his infinite support, throughout this research and for his reviewing of manuscript.

I would like to express my sincere indebtedness to Dr. Ahmed Rashad for his friendly help.

The experimental work was carried out at the Properties and Testing of Materials Laboratory, Structural Engineering Department., Faculty of Engineering., Ain Shams University. The help and assistance of the laboratory personnel and manpower are gratefully appreciated.

Finally, I would like to thank my family for their continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times.

Rehabilitation of RC Beams Using Vacuum Assisted Resin Transfer Molding.

Master of Science, 2009

Eng.: Mohamed Kohail Mohamed Fayez

Structural Engineering Department, Faculty of Engineering, Ain Shams University.

ABSTRACT

The retrofitting and rehabilitation of concrete members using externally bonded Fibre Reinforced Plastics (FRP) is becoming an increasingly popular retrofit technique worldwide. The new Vacuum Assisted Resin Transfer Molding (VARTM) process was studied locally in Egypt in strengthening and repairing of RC elements, and was proved that the VARTM process is applicable domestically using local available materials, equipments, and workmanship. The research work carried herein will focus on the application of VARTM process in retrofitting and rehabilitations of RC beams subjected to various stress levels, to simulate the strengthening and repair of RC elements on site that will always take place under loading.

The research work focuses on studying the structural behaviour of the retrofitted RC T-beams under loading using locally available GFRP wraps using VARTM process.

The research work is carried out to study the structural behaviour of retrofitted RC T-beams using VARTM process in both flexural and flexural shear modes of failure.

The research work focuses on using VARTM process to inject cracked concrete under application of load, and studying the structural behaviour of the injected RC T-beams. The VARTM process is used to inject both flexure and flexural shear cracks. A brief literature was carried out for review of previous research work that dealt with retrofitting concrete elements using carbon or glass composites.

An experimental program is designed to study the structural behaviour of retrofitted RC T-beams using VARTM process under no load. Then to study the structural behaviour of retrofitted RC T-beams using VARTM process under different stress levels. Then to study the effect of injecting flexure and flexure shear cracks using VARTM process.

The experimental work reported herein demonstrated the retrofitting of RC beams using locally available GFRP wraps by the application of VARTM process proved to be an easy and reliable retrofitting technique. Retrofitting RC beams using externally bonded GFRP wraps had increased the ultimate load carrying capacity and had improved the stiffness.

Keywords: RC T-beam, GFRP, VARTM, Retrofitting, under loading.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	i
ABSTRACT	ii
Table of Contents	iii
List of Tables	vii
List of Figures	viii
List of Abbreviation	xiii
CHAPTER (1): Introduction	
1.1 Background	1
1.2 Definition of the Problem	2
1.3 Objective of the Research Work	5
1.4 Thesis Organization	5
CHAPTER (2): Literature Review	
2.1 Introduction	7
2.2 Retrofitting Concrete Elements by Using FRP	7
2.3 Vacuum Assisted Resin Transfer Molding (VARTM)	15
CHAPTER (3): Crack Injection	
3.1 Introduction	20
3.2 Materials Used in Injection	20
3.2.1 Cement Grouts	21
3.2.2 Epoxy Resins	23
3.2.3 Polyester Resins	23
3.2.4 Polyurethane	24
3.2.5 Methyl Metacrylate resin (MMA)	24
3.2.6 High Molecular Weight Methacrylate (HMWM)	24
3.2.7 Silicate Gels	25

TABLE OF CONTENT

3.3 Inspection of Cracks	25
3.4 Injection process	25
3.4.1 Cleaning	26
3.4.2 Sealing the cracks for injection	27
3.4.3 Fixing of entry port devices	27
3.4.4 Checking of leak proofness	28
3.4.5 Methods, devices and equipment	29
3.4.6 Injection procedure	32
CHAPTER (4): Experimental Program	
4.1 Introduction	34
4.2 Experimental Research Program	34
4.3 Dimensions and Details of Reinforcement for RC T-Beams	36
4.3.1 Phase I (Flexure-Group)	36
4.3.2 Phase II (Shear-Group)	38
4.4 Experimental Test Set up	40
CHAPTER (5): Preparation of Test Specimens	
5.1 Introduction	42
5.2 Casting and Curing of the Concrete Specimens	42
5.3 Tests Results of Casted Concrete	43
5.4 Tests Results of Steel Reinforcement	44
5.5 Retrofitting Materials	45
5.6 Interface Treatment	45
5.7 Application of VARTM Process for Retrofitted RC T-	
Beams using GFRP Wraps	46
5.8 Experimental Test Setup	55

CHAPTER (6): Experimental Result	
6.1 Introduction	57
6.2 Test Results of Part I (Flexure Group)	57
6.3 Test Results of Flexural Control RC T-Beam (F-CN)	58
6.4 Test Results of Flexural FRP Control RC T-Beam	
(F-FRP-CN)	61
6.5 Test Results of Flexural Retrofitted RC T-Beam under	
Loading (F-35%)	64
6.6 Test Results of Flexural Retrofitted RC T-Beam under	
Loading (F-50%)	67
6.7 Test Results of Flexural Retrofitted RC T-Beam under	
Loading (F-R-50%)	70
6.8 Test Results of Flexural Retrofitted RC T-Beam under	
Loading (F-65%-50%)	74
6.9 Test Results of Part I (Shear Group)	77
6.10 Test Results of Shear Control RC T-Beam (Sh-CN)	78
6.11 Test Results of Shear FRP Control RC T-Beam	
(Sh-FRP-CN)	82
6.12 Test Results of Shear Retrofitted RC T-Beam under	
Loading (Sh-35%)	90
6.13 Test Results of Shear Retrofitted RC T-Beam under	
Loading (Sh-50%)	93
6.14 Test Results of Shear Retrofitted RC T-Beam under	
Loading Using Resin Only (Sh-R-50%)	96
6.15 Test Results of Flexural Retrofitted RC T-Beam under	
Loading (Sh-65%-50%)	99

CHAPTER (7): Comparison Between The Structural Beha	aviour of
Tested RC T-Beams	
7.1 Introduction	102
7.2 Flexure Group	102
7.3 Shear Group	110
CHAPTER (8): Conclusions And Recommendations	
8.1 Introduction	117
8.2 Conclusions	117
8.2.1 Retrofitting RC T-Beams in Flexure Group	118
8.2.2 Retrofitting RC T-Beams in Shear Group	118
8.3 Recommendations for Further Work	120
References	121
Appendix "A": Experimental Test Results	A-1

LIST OF TABLES

Table		Page
(5-1)	Compressive Test Result for Concrete Specimens	43
(5-2)	Tension Test Result for Concrete Specimens	43
(5-3)	Tension Test Result for Steel Specimens	44
(5-4)	Mechanical Properties of the Used Glass Fibre	45
(6-1)	Summary of Major Observation for Flexure Group	57
(6-2)	Summary of Major Observation for RC T-beam (F-CN)	59
(6-3)	Summary of Major Observation for RC T-beam	
	(F-FRP-CN)	61
(6-4)	Summary of Major Observation for RC T-beam (F-35%)	65
(6-5)	Summary of Major Observation for RC T-beam (F-50%)	67
(6-6)	Summary of Major Observation for RC T-beam (F-R-50%)	71
(6-7)	Summary of Major Observation for RC T-beam	
	(F-65%-50%)	75
(6-8)	Summary of Major Observation for Shear Group	77
(6-9)	Summary of Major Observation for RC T-beam (Sh-CN)	79
(6-10)	Summary of Major Observation for RC T-beam	
	(Sh-FRP-CN)	83
(6-11)	Summary of Major Observation for RC T-beam (Sh-35%)	91
(6-12)	Summary of Major Observation for RC T-beam (Sh-50%)	94
(6-13)	Summary of Major Observation for RC T-beam	
	(Sh-R-50%)	97
(6-14)	Summary of Major Observation for RC T-beam	
	(Sh-65%-50%)	100

Figure		Page
(2-1)	Anchor types for U-wrap	12
(3-1)	The important of the crack size	22
(3-2)	The crack injecting process	26
(3-3)	Entry ports used for insertion into drilled hole	28
(3-4)	Entry flush port	28
(3-5)	pressure pot for epoxy injection	29
(3-6)	Hand operated pressure gun	30
(3-7)	Crack injection techniques	31
(3-8)	The injection procedure	32
(3-9)	A continuous mixing head gun being used for crack	
	injection	33
(4-1)	Experimental Program	34
(4-2)	Dimensions and Details of Reinforcements of RC T-Beams	
	in Flexural Group	36
(4-3)	Retrofitting of RC T-Beams in Flexural Group	37
(4-4)	Dimensions and Reinforcements of RC T-Beams in Shear	
	Group	38
(4-5)	Retrofitting of RC T-Beams in Shear Group	39
(4-6)	Test Set Up	40
(4-7)	LVDT Distribution	41
(5-1)	Fillets to prevent tearing	43
(5-2)	Interface Treatment	46

(5-3)	surface treatment	46
(5-4)	Three Layers of GFRP Wraps	47
(5-5)	The resin flow due to suction	48
(5-6)	Punching holes in infusion and vacuum lines	49
(5-7)	The vacuum bag with the infusion and vacuum lines	50
(5-8)	Placing of the vacuum bag around the RC T-beam	51
(5-9a)	The connection of the infusion line to the resin reservoir	52
(5-9b)	The connection of the vacuum lines to the vacuum pump	
	through the resin trap	52
(5-10)	The resin flew through the glass fibre	53
(5-11)	The FRP U-jacket after removing the vacuum bag	54
(5-12)	Experimental Test Set-up	55
(5-13)	Instrumentations of a Typical Beam	56
(6-1)	Cracking Pattern at 9.00 ton	59
(6-2)	Mode of Failure for F-CN	60
(6-3)	Load-Deflection Curve for F-CN	60
(6-4)	The Beam F-FRP During Testing	62
(6-5a)	The Failure Mode of F-FRP	62
(6-5b)	The Failure Mode of F-FRP	63
(6-6)	Load- Deflection Curve of F-FRP	63
(6-7)	The Beam F-35% Under Loading Before Retrofitting	65
(6-8)	The Beam F-35% Under Loading After Retrofitting	65
(6-9)	The Failure Mode of F-35%	66
(6-10)	Load-Deflection Curve of F-35%	66
(6-11)	The Beam F-50% Under Loading Before Retrofitting	68
(6-12a)	The Failure Mode of F-50%	68
(6-12b)	The Failure Mode of F-50%	69

(6-13)	Load-Deflection curve of F-50%	69
(6-14)	The RC T-beam F-R-50% during testing	71
(6-15)	The RC T-beam F-R during testing after injecting the crack	72
(6-16a)	The Failure Mode of F-R-50%	72
(6-16b)	The Failure Mode of F-R-50%	73
(6-17)	Load-Deflection curve of F-R-50%	73
(6-18a)	Mode of Failure of F-65%-50%	75
(6-18b)	Mode of Failure of F-65%-50%	76
(6-19)	Load-Deflection curve of F-65%-50%	76
(6-20)	The RC T-beam Sh-CN prior to loading	79
(6-21)	Cracking pattern at 7.00 ton	80
(6-22)	The first flexure shear crack at 9.00 ton	80
(6-23)	Mode of Failure of Shear Control RC T-Beam (Sh-CN)	81
(6-24)	Load-Deflection curve of Shear Control RC T-Beam	81
(6-25)	The Beam (Sh-FRP-CN) during Testing	84
(6-26)	1 st Mode of Failure of RC T-beam (Sh-FRP-CN)	84
(6-27)	External Stirrups after Failure	85
(6-28)	Application of U-shaped anchorage system	85
(6-29)	U-shaped anchorage system	86
(6-30)	U-shaped anchorage system after fixing it by resin	86
(6-31)	The beam Sh-FRP-CN During 2 nd Test	87
(6-32a)	Mode of Failure of RC T-beam (Sh-FRP-CN)	87
(6-32b)	Mode of Failure of RC T-beam (Sh-FRP-CN)	88
(6-32c)	Mode of Failure of RC T-beam (Sh-FRP-CN)	88
(6-33)	1 st attempt Load-Deflection curve of Sh-FRP	89
(6-34)	2 nd attempt Load-Deflection curve of Sh-FRP	89
(6-35)	The Beam Sh-35% Under Loading Before Retrofitting	91
(6-36)	The Mode of Failure of Sh-35%	92

(6-37)	Load-Deflection curve of Sh-35%	92
(6-38)	The Beam Sh-50% Under Loading Before Retrofitting	94
(6-39)	The Mode of Failure of Sh-50%	95
(6-40)	Load-Deflection curve of Sh-50%	95
(6-41)	The Beam Sh-R Under Loading Before Retrofitting	97
(6-42)	The RC T-beam during testing after injecting the crack	98
(6-43)	Load-Deflection curve of Sh-R-50%	98
(6-44a)	The Mode of Failure of the Beam F-65%-50%	100
(6-44b)	The Mode of Failure of the Beam F-65%-50%	101
(6-45)	Load-Deflection curve of Sh-65%-50%	101
(7-1)	Comparison between the Ultimate Load Carrying Capacity	
, ,	F-CN and F-FRP	103
(7-2)	Comparison between the maximum mid-span deflection of	
	the RC T-beams F-CN and F-FRP	103
(7-3)	Comparison between the load deflection curves	
	F-CN and F-FRP	104
(7-4)	Comparison between the Ultimate Load Carrying Capacity	
	F-CN, F-FRP, F-35%, F-50% and F-65%-50%	105
(7-5)	Comparison between the maximum mid-span deflection of	
(, 0)	the RC T-beams F-CN, F-FRP, F-35%, F-50% and F-65%-	106
(7-6)	Comparison between the load deflection curves	100
(7.7×	F-CN, F-FRP, F-35%, F-50% and F-65%-50%	106
(7-7)	Comparison between the Ultimate Load Carrying Capacity	
	F-CN, F-R-50% and F-50%	108

(7-8)	Comparison between the maximum mid-span deflection of	
	the RC T-beams F-CN, F-R-50% and F-50%	108
(7-9)	Comparison between the load deflection curves	
	F-CN, F-R-50% and F-50%	109
(7-10)	Comparison between the Ultimate Load Carrying Capacity	
	Sh-CN, Sh-FRP-1 and Sh-FRP-2	110
(7-11)	Comparison between the maximum mid-span deflection of	
	the RC T-beams Sh-CN, Sh-FRP-1 and Sh-FRP-2	111
(7-12)	Comparison between the load deflection curves	
	Sh-CN, Sh-FRP-1 and Sh-FRP-2	111
(7-13)	Comparison between the Ultimate Load Carrying Capacity	
	Sh-CN, Sh-FRP-1, Sh-35%, Sh-50% and Sh-65%-50%	113
(7-14)	Comparison between the maximum mid-span deflection of	
	the RC T-beams Sh-CN, Sh-FRP-1, Sh-35%, Sh-50% and	
	Sh-65%-50%	113
(7-15)	Comparison between the load deflection curves Sh-CN,	
	Sh-FRP-1, Sh-35%, Sh-50% and Sh-65%-50%	114
(7-16)	Comparison between the Ultimate Load Carrying Capacity	
	Sh-CN, Sh-R-50% and Sh-50%	115
(7-17)	Comparison between the maximum mid-span deflection of	
	the RC T-beams Sh-CN, Sh-R-50% and Sh-50%	116
(7-18)	Comparison between the load deflection curves	
	Sh-CN, Sh-R-50% and Sh-50%	116