AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEPHYSICS DEPARTMENT

Petrophysical Seismic Study of the Jurassic Sandstone Reservoirs: El-Obaiyed Field, Western Desert, Egypt

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree of Science in Geophysics

BY

Moataz Mohamed Gomaa Abd-El-Rahman (B. Sc. In Geophysics, 2014)

To

GEOPHYSICS DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

Supervised by

Prof. Dr. Abdel Moktader A. ElSayed

Prof. of Petrophysics, Department of Geophysics, Faculty of Science, Ain Shams University

Prof. Dr. Attia M. Attia

Prof. Dr. Abdel-Khalek M.M. El-Werr

Prof. of Petroleum Engineering at Petroleum Engineering and Gas Technology Department, Faculty of Engineering, BUE

Prof. of Seismic Methods, Geophysics Department, Faculty of Science, Ain Shams University

Cairo, 2017

Note

The present thesis is submitted to the Faculty of Science, Ain Shams
University in partial fulfillment for the requirements of the Master degree of
Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1) Geophysical field measurements.
- 2) Numerical analysis and computer programming.
- 3) Advanced Well Logging.
- 4) Formation Evaluation.
- 5) Physical properties of rocks.
- 6) Basin analysis.
- 7) Subsurface geology.
- 8) Geophysical exploration.
- 9) Reservoir evaluation.
- 10) Fluid dynamics.

He successfully passed the final examinations in these courses.

In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Salah Eldin Abd Elwahab Mousa

جامعة عين شمس كلية العلوم قسم الجيوفيزياء

دراسة بتروفيزيقية سيزمية لخزانات عصر الجوراسى الرملية: حقل الابيض, الصحراء الغربية, مصر

رسالة مقدمة لاستكمال متطلبات الحصول على درجة الماجستير في العلوم في الجيوفيزياء

مقدمة من

معتز محمد جمعة عبد الرحمن (بكالوريوس العلوم, 2014)

الى

قسم الجيوفيزياء كلية العلوم جامعة عين شمس

تحت اشراف

أ.د./عبدالمقتدر عبد العزيز السيد

أستاذ البتروفيزياء بقسم الجيوفيزياء كلية العلوم جامعة عين شمس

أ.د./ عطيه محمود عطيه

أ.د./ عبد الخالق محمود محمد الور

أستاذ هندسة البترول -بقسم هندسة البترول وتكنولوجيا الغاز -كلية الهندسة الجامعة البريطانية في مصر

أستاذ الجيوفيزياء بقسم الجيوفيزياء كلية العلوم – جامعة عين شمس

جامعة عين شمس كلية العلـــوم قسم الجيوفيزياء

رسالة ماجستير في العلوم في الجيوفيزياء

<u> </u>
إسم الطالب : مغز محمد جمعة عبد الرحمن : دراسة بتروفيزيقية سيزمية لخزانات عصر الجوراسي الرملية: حقل الابيض، الصحراء الغربية، مصر المحراء الغربية، مصر : ماجستير في العلوم في الجيوفيزياء
لجنة الإشراف 1) أد/ عبد المقتدر عبد العزيز السيد
أستاذ الجبوفيزياء بقسم الجبوفيزياء — كلية العلوم — جامعة عين شمس — القاهرة - مصر 2) أ.د/ عبد الخالق محمود محمد الور
أستذ الجيوفيزياء التطبيقية بقسم الجيوفيزياء كلية العلوم جامعة عين شمس - القاهرة - مصر 3 محمود عطيه محمود عطيه
أستاذ هندسة الخزانات بقسم هندسة الخزانات وتكنولوجيا الغاز - كلية الهندسة-الجامعة البريطانية في مصر - القاهرة -
مصر <u>اجنة التحكيم</u> 1) أبد/ محمد سليم زيدان أستاذ غير متفرغ -كلية الهندسة – جامعة الأزهر ورئيس قسم هندسة البترول بالجامعة البريطانية سابقا. 2) أ.د./عبدالمقتدر عبد العزيز السيد أستاذ الجيوفيزياء (بتروفيزياء)-بقسم الجيوفيزياء كلية العلوم-جامعة عين شمس
3) أ.د/ حاتم فاروق عويضة مدير عام الاستكشاف لشركة الشرق الأوسط وشمال أفريقيا للبترول والغاز (موج إنرجى) – بشركة شمال سيناء للبترول (نوسبكو) 4) أ.د./ عبد الخالق محمود محمد الور
أستاذ الجيوفيزياء (سيزمية)-بقسم الجيوفيزياء كلية العلوم – جامعة عين شمس
: / / الدراسات العليا : فتم الإجـــازة : / /
أجيزت الرسالة بتاريخ : / /
<u>موافقة مجلس الكليــة</u> : / / موافقة مج <u>لس الجامعة</u> : / /

جامعة عين شمس كلية العلـــوم قسم الجيوفيزياء

- إسم الطالب : معتز محمد جمعة عبد الرحمن

- الدرجة العلمية: ماجستير في العلوم في الجيوفيزياء

- القسم التابع: قسم الجيوفيزياء

- إسم الكليسة : كلية العلوم

- إسم الجامعة : جامعة عين شمس

- سنة التخرج: 2014

- سنة المنسح: 2017

أشكر السادة الأساتذة الذين قاموا بالإشراف وهم:

1) أد/ عبد المقتدر عبد العزيز السيد

أستذ الجيو فيزياء بقسم الجيو فيزياء - كلية العلوم - جامعة عين شمس - القاهرة - مصر

2) أ.د/ عبد الخالق محمود محمد الور

أستاذ الجيوفيزياء التطبيقية بقسم الجيوفيزياء كلية العلوم جامعة عين شمس - القاهرة - مصر

د/ عطیه محمود عطیه

أستاذ هندسة الخزانات بقسم هندسة الخزانات وتكنولوجيا الغاز - كلية الهندسة-الجامعة البريطانية في مصر - القاهرة -مصر

و كذلك أشكر كل من:

- الدكتورة ناهلة عبد المقتدر عبد العزيز السيد مدرس بقسم البتروفيزياء – معهد بحوث البترول
 - 2) المهندس أحمد حمدى حافيظ جيوفيزيائي بشركة بدر الدين
 - 3) المهندس وائل لطفىبتروفيزيائى بشركة قطر للغاز
 - 4) المهندس أحمد حسنى جيوفيزيائى بشركة رشيد
 - 5) المهندس محمد شحاته جیوفیزیائی اول

Approval Sheet

Petrophysical Seismic Study of the Jurassic Sandstone Reservoirs: El-Obaiyed Field, Western Desert, Egypt

A Thesis Submitted for Partial Fulfillment for the Requirements of the Degree of Master of Science (M.Sc.) in Geophysics

By

Moataz Mohamed Gomaa Abel-Rahman

(B.Sc. in Geophysics – Faculty of Science – Ain Shams University – 2014)

Geophysics Department Faculty of Science Ain Shams University

Approved

Advisors

Prof. Dr. Abdel Moktader A. ElSayed (Ain Shams Universit	y)
Prof. Dr. Abdel-Khalek M.M. El-Werr (Ain Shams University)	
Prof. Dr. Attia M. Attia (Ain Shams University)	
"	
Head of Geophysics Department	

Prof. Dr. Salah Eldin Abd Elwahab Mousa

Acknowledgment

Firstly, I want to thank Allah, What was a good deed is from Allah and what was bad is from me.

I wish to thank **Dr. Abdel Moktader A. El Sayed** Professor of Petrophysics, Geophysics Department, Faculty of Science, Ain shams University for his valuable comments and supporting me to produce the best in this thesis.

I would like to express my sincere thanks to **Dr. AbdEl khaleq Elwerr** Professor of Seismic Methods, Geophysics Department, Faculty of Science, Ain Shams University for his valuable comments and sharing his precious time to reviewing and leading his comments in this thesis.

I wish to express my gratitude to **Dr. Attia M. Attia**, Prof. of Petroleum Engineering, Petroleum Engineering and Gas Technology Department, Faculty of Engineering, BUE, for his guidance through this work, reviewing the write up and supporting me with many of research papers needed for the study.

I want to thank **Dr. Nahla A. El Sayed**, assistant professor in Petrophysics, EPRI, for her helping in the petrophysical problems.

In addition, special thanks to **Eng. Ahmed Hafeez**, Geophysicist in BAPETCO, for helping in data handling, **Eng. Wael Lotfy**, Petrophysicist, for his teaching me software skills. **Eng. Ahmed Hosny**, Geophysicist in RASHPETCO, for his guidance in inversion Procedure and software skills. **Eng. Mohamed Shehata**, Senior Geophysicist, for helping in Neural Networks problem.

Dedication

I would like to dedicate my work to my parents, my sisters, my dear wife, my daughter and my son whose love, help and support kept me going.

Abstract

Petrophysical seismic study represented by core data analysis, wireline logs analysis and 3D seismic data interpretation was carried out at El-Obaiyed Field, North Western Desert, Egypt. Core description was aimed at the petrography, while core analysis was used for porosity-permeability relationship and permeability prediction. Wireline log analysis aims to reservoir petrophysical properties evaluation. Seismic interpretation was performed to detect the subsurface structural and stratigraphic features. The Obaiyed Field lies at the western flank of the Matruh basin.

The results were collected together to build-up the reservoir static model. Static model is a representative tool by which the facies, petrophysical properties and structure can be imagined. Such static model can support the detection of suitable places for hydrocarbon potential.

The Lower Safa static model reservoir shows a combined trap formed of faulted anticline structural trap with pinching out stratigraphic feature. This reservoir is subdivided into four units composed of sand and shale intercalations with thickness increasing northwards. Higher effective porosity and permeability values were noticed for the sand, while lower values are found for the shale. The Lower Safa reservoir has porosity averaged values ranged from 4 to 11 %, with abrupt change in reservoir quality due to diagenesis process, and net pay thickness of reservoir varied from few meters to hundreds of meters due to stratigraphic situation of the Jurassic deposits.

The obtained results of seismic attributes with seismic inversion predicted from the neural network algorithm software were correlated with wireline log derived porosity at well locations to perform a porosity-acoustic impedance relationship. This relation was used to estimate porosity from the inverted seismic data (acoustic impedance) along all available seismic lines and

to produce an effective porosity map for the Lower Safa reservoir, which look to be a gas charged reservoir.

List of Contents

Subject	Page Number
Acknowledgment	III
Abstract	IV
List of Contents.	VI
List of Figures	XII
List of Tables.	
Chapter 1: Introduction and Regional Geologic	al Settings
1.1 Exploration History of El-Obaiyed Field	2
1.2 Objective of The Present Study	
1.3 Available Data	
1.4 Regional Structure Regime	6
1.5 Regional Tectonic Controls During The Jurassic	7
1.6 Stratigraphy of Western Desert	9
1.6.1 Paleozoic	12
1.6.1.1 Cambrian-Ordovician	12
1.6.1.2 Silurian	12
1.6.1.3 Devonian	13
1.6.1.4 Carboniferous	
1.6.1.5 Permian	
1.6.2 Mesozoic	14
1.6.2.1 Jurassic	14
1.6.2.2 Cretaceous	15
1.6.3 Cenozoic	16
1.6.4 Stratigraphy of Jurassic epoch	18
Chapter 2: Reservoir Description and Wireline	Log Analysis
2.1 Introduction	19
2.2 Core Description.	20
2.2.1 Sedimentology	20
2.2.2 Petrography	

0.2 D		N 124	21
		Quality	
		og Evaluationable Data	
		ine Log Quality Controleal Analysis Procedure	
2.5.1		Editing	
2.5.1		ion	
2.5.3		Volume Calculation	
		The Gamma Ray Log (Single indicator)	
2.5.3.1 2.5.3.2		Neutron and Density Logs (\emptyset_N and \emptyset_D) (
		Indicator)	
2.5.4	Effect	tive Porosity Calculation	29
2.5	5.4.1	Porosity from density log	29
2.5	5.4.2	Porosity from Neutron logs:	
2.5	5.4.3	Density – Neutron combined logs	29
2.5.5	Water	r Saturation Calculation	29
2.5	5.5.1	Mono-porosity cross plot (Pickett plot)	30
2.5	5.5.2	Core data analyses	30
2.5.6	Hydro	ocarbon Saturation Calculation	31
2.5.7	Initial	Gas in place	32
2.6 Resu	ılts and	Discussion	32
2.6.1	Well	D-13	32
2.6.2	Well	D-17	36
2.6.3		OBA-S1	
2.6.4	Well.	JB 16-3	42
2.7 Rese	ervoir P	Property Maps	47
2.7.1	Net P	ay Maps	48
2.7.2	Poros	ity Maps	49
2.7.3		aturation Maps	
2.7.4	Shale	Volume Maps	50
2.8 2-D	Correla	ation	51
2.9 Co	nclusio	n	53

Chapter 3: Rock Physics Models

3.1	Introduction	54		
3.2				
3.3	Lithology Identification And Elastic Moduli	55		
3.4	Rock Physics Models	56		
3.	4.1 Δt_p - Δt_s Model For Gas Identification	56		
3.	$4.2 V_p/V_s$ Ratio Model For Lithology Identification	58		
3.	4.3 Velocity - Porosity Model	59		
	3.4.3.1 Reuss-Voigt model	59		
	3.4.3.2 El-Sayed velocity porosity model	60		
3.5	Elastic Rock Properties Results	62		
3.6	Conclusion	66		
	4.5			
Chapte	r 4: Reservoir Heterogeneity			
4.1	Introduction	67		
4.2	Methods to determine the degree of heterogeneity	68		
4.	2.1 Coefficient of Variation (Cv)	68		
	4.2.1.1 D-13 Well	69		
	4.2.1.2 D-17 Well	69		
	4.2.1.3 Well OBA-S1	70		
4.	2.2 Lorenz Coefficient	71		
	4.2.2.1 Well D-13	72		
	4.2.2.2 Well D-17	72		
	4.2.2.3 Well JB 16-3	73		
4.	2.3 Dykstra Parson (V _k)	74		
4.3	Hydraulic Flow Unit (HFU)	76		
4.4	Winland R35 Method	81		
4.5	Intercorrelation among Borehole, Core Analysis and Re	eservoir		
	Lithofacies.			
4.6	Conclusion	89		

Chapter 5: Seismic Interpretation

	5.1		roduction	
	5.2		Obaiyed Seismic Acquisition	
	5.2	2.1	Data Acquisition Parameters	91
		5.2	2.1.1 Source parameters	91
			2.1.2 Receiver parameters	92
		5.2	2.1.3 Recording system	93
	5.3	Se	sismic Interpretation Procedure	94
	5.3	3.1	Well-to-Seismic Tie	95
	5.3	3.2	Geo-Seismic Condition.	
	5.3	3.3	Horizon Picking and Cross correlation	100
	5.3	3.4	Fault Picking	100
		5.3	3.4.1 The interpreted inline seismic sections	s101
		5.3	3.4.2 The interpreted crossline seismic section	
	5.3	3.5	Looping	105
	5.3	3.6	Maps Construction	105
	5.4	Se	eismic Structural Interpretation	108
	5.5	Se	eismic Stratigraphic Interpretation	109
	5.6	Co	onclusion	110
Ch	apter	: 6:	Static Reservoir Modeling	
	6.1	Int	troduction	111
	6.2	Ca	ategories of Reservoir Modeling	112
	6.3	Stı	ructural Model	114
	6.3	3.1	Fault Modeling	114
		3.2	Pillar Gridding	
	6.3	3.3		
	6.4	Fa	acies Model	
	6.4	4.1	Scale up Facies Log	120
		4.2	Lower Safa Litho-Facies description	
	6.4	4.3	HFU and Facies model Relationship	
	6.5	Pe	etrophysical model	124

	6.5.1 Effective Porosity			125
	6.5	5.2 F	ermeability	128
	6.6	Cond	lusion	131
Cł	apter	7: S	eismic Inversion and Artificial Neural N	letworks
	7.1	Wha	t is Seismic Inversion?	133
	7.2	Why	Seismic Inversion?	135
	7.3	How	to Apply Seismic Inversion?	136
	7.4	Wav	elet Extraction	138
	7.5	Inve	rsion Techniques	140
	7.5 7.5		re-Stack Inversionost-Stack Inversion	141
		7.5	.2.1.1 The general steps of applying model-base inversion.	ed seismic
	7.6 A ₁		ication of Post-Stack Model-Based Inversion at	· ·
		Field		146
	7.6.1		Well to Seismic Calibration	
	7.6 7.6		nitial Impedance Model Building nversion Process Itself	
	7.7 7.8		pretation of Seismic Inversion Resultsicial Neural Networks (ANNS)	
	7.8	3.1	Classification Of Artificial Neural Networks (ANN	Ns)156
		7.8.1 7.8.1	1	
	7.9	Scop	e of Work	157
	7.9 7.9).2 A	Conventional Computation	160
	7 9) (Conclusion	164