

Ain Shams University Faculty of Science Zoology Department

The potential role of L-carnitine against cardio and haematotoxicity of gamma radiation in male albino rats.

A Thesis

Submitted for the Degree of Master of Science (M.Sc) as a Partial Fulfillment for the Requirements of the Master of Science in Physiology / Zoology

By Zeinab Ali Ahmed Abd-Elallah

(B.Sc.in Zoology / Chemistry, 2003)

Supervised by

Professor Dr. Nefissa Hussein Meky

Professor of Physiology Zoology Department-Faculty of Science - Ain Shams University

Professor Dr.Amal Mahmmoud Haggag

Professor of Physiology Biological Applications Department- Atomic Energy Authority

(2018)

بسم الله الرحمن الرحيم

(وَقُل رّبِّ زِدْنِي عِلْما)

صدق الله العظيم سورة طه اية (١١٤)

Thesis Entitled

The potential role of L-carnitine against cardio and haematotoxicity of gamma radiation in male albino rats.

Thesis Supervisors:

1) Professor Dr. Nefissa Hussein Meky

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams-University.

2) Professor Dr.Amal Mahmmoud Haggag

Professor of Physiology, Biological Applications Department Atomic Energy Authority.

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deepest gratitude to my **Prof. Dr.**Neffissa Hussein AbdElrheem Meky, Professor of Physiology, Zoology

Department, Faculty of Science, Ain Shams University for suggesting and
planning the subject, supervising the whole work, reading and criticizing
the manuscript and for the valuable suggestions in order to perfect my work,
continuous encouragement and valuable advice to present this work in a
good pattern.

Special thanks and faithful appreciation are to my **Prof. Dr. Amal Mahmmoud Haggag**, Professor of Physiology, Biological Applications Department, Atomic Energy Authority for keen supervision, valuable guidance and encouragement and continuous support. I am also very grateful for to my supervisor **Assistant Professor Amaal Mohammed Kamal**, Assistant Professor of Physiology, Biological Applications Department, Atomic Energy Authority for her kind guidance, great patience and the subjective and precise revision of the thesis in addition to her helpful advice and continuous encouragement for me.

My deep and sincere thanks are extended to **Prof. Dr. Mervat Bahgat,** Professor of Clinical Pathology, Biological Applications
Department, Atomic Energy Authority for her great scientific help and indispensible efforts that were kindly and generously offered by her.

Thanks and high appreciation also to **Dr. SalehAshour**, Lecture of Biochemistry at Hot Labs Center, Atomic Energy Authority for his kind help, valuable guidance and his valuable contribution in the experimental work.

Finally no thanks can repay my husband, my parents, my sister and my friends for their continuous help, support and to my children for their patience which enable this work to be completed, may god reward them all.

Contents

	Pages
- List of tables	i
- List of figures	ii
- List of abbreviations	V
- Abstract	vii
- Introduction	1
- Aim of the work	4
-Review of literature	5
Radiation exposure	6
1) Chronic exposure	6
2) Acute exposure	6
Biological effect of ionizing radiation	7
1) Direct action	7
2) Indirect action	7
Free radicals	8
Types of free radicals	9
1) Reactive oxygen species (ROS)	9
2) Reactive nitrogen species (RNS)	11
Sources of free radical	12
Internal sources (Endogenous)	12
External source (Exogenous)	13
Physiological Factors	13
Formation of free radicals	13
Function of ROS and RNS in Cells	14
Free radical-targets	16
1) Lipids	16
2) Proteins	21
3) DNA	21
Antioxidants	22
Oxidative stress	23
Oxidative stress and heart (Cardiotoxicity)	25
Cardiotoxicity	26

$Contents ({\tt Cont.})$

	Pages
Cardiovascular diseases	26
1) Coronary artery disease (CAD)	26
2) Valvular heart disease	27
Atherosclerosis	28
Oxidative Stress and Atherosclerosis	29
Effects of ionizing radiation on the haematopoietic sys	tem30
L-Carnitine	32
Historical background	32
Chemical structure of L-carnitine and its derivatives	33
Carnitine functions	35
Carnitine acyltransferases	37
Carnitine sources and pharmacokinetics	39
L-carnitine biosynthesis	40
Carnitine homeostasis	43
Carnitine transporters	44
Carnitine deficiency	46
A) Primary carnitine deficiency	47
1-Systemic carnitine deficiency (SCD)	47
2-Muscular carnitine deficiency (MCD)	47
B) Secondary carnitine deficiency	48
1) Genetic origin	48
2) Acquired medical conditions	48
i. Hemodialysis	49
ii. Drug induced	49
C) Physiological carnitine deficiency	50
-Materials and Methods	52
-Results	66
-Discussion	94
-Summary and conclusion	109
- References	113
-Arabic summary	

List of Tables

Table	Title	Page
(1)	Effect of L-carnitine on the serum levels of cardiac enzymes (CK, CK-MB, LDH, AST and Troponin I TnI (U/L) in gamma irradiated rats.	68
(2)	Effect of L-carnitine on the serum levels of total antioxidant capacity (mM/L) and malondialdehyde (mM/L) in gamma irradiated rats.	73
(3)	Effect of L-carnitine on lipid profile (cholesterol, triglyceride, HDL-c and LDL-c) mg/dl in gamma irradiated rats.	77
(4)	Effect of L-carnitine on serum glucose level (mg/dl) in gamma irradiated rats.	81
(5)	Effect of L-carnitine on the concentrations of WBCs count ($\times 10^9$ /L), platelets count ($\times 10^9$ /L), RBCs count ($\times 10^{12}$ /L), Hb level (g/dl), Hct (%) and Reticulocytic count ($\times 10^{12}$ /L) in gamma irradiated rats.	86

List of Figures

Fig.	Title	Page	
(1)	Types of radiation in electromagnetic spectrum.		
(2)	The direct and indirect cellular effects of ionizing		
	radiation on macromolecules.		
(3)	Reactive oxygen species: main forms and sources.	12	
(4)	Sources of free radicals	13	
(5)	Free radical formation	14	
(6)	Reactions of ROI and RNI with proteins, carbohydrates and lipid		
(7)	Fenton and Haber-Weiss reaction.	18	
(8)	Lipid peroxidation process.	20	
(9)	Simplified scheme showing ROS and HNE pathways.	21	
(10)			
(11)	Cellular damage due to free radicals. 2 Imbalance between oxidant and antioxidant. 2		
$\frac{(12)}{(12)}$	Oxidative stress-induced diseases in humans.		
$\frac{(12)}{(13)}$	ROS induced lipid peroxidation.		
(14)	Interaction of oxidative stress and atheromatosis.		
(15)	Chemical structure of L-carnitine and its derivatives.		
(16)	Carnitine is actively transported via OCTN ₂ into the		
	cytosol to participate in the shuttling of activated long chain fatty acids into the mitochondria where β -oxidation takes place.		
(17)	Carnitine antioxidant action.		
(18)	The carnitine shuttle and role of carnitine in the		
	mitochondrial oxidation of fatty acids.	38	
(19)	Carnitine biosynthesis pathway.	42	
(20)	Schematic representation of carnitine homoeostasis	moeostasis	
	in man.	44	

Fig.	Title	Page
(21)	Schematic illustration of the involvement of OCTNs in carnitine disposition and role of carnitine in β -oxidation.	46
(22)	Ameliorative effect of L-carnitine on the serum levels of CKin gamma irradiated rats.	69
(23)	Ameliorative effect of L-carnitine on the serum levels of CK-MB in gamma irradiated rats.	69
(24)	Ameliorative effect of L-carnitine on the serum levels of LDH in gamma irradiated rats.	70
(25)	Ameliorative effect of L-carnitine on the serum levels of AST in gamma irradiated rats.	70
(26)	Ameliorative effect of L-carnitine on the serum levels of TnI in gamma irradiated rats.	70
(27)	Ameliorative effect of L-carnitine on the serum levels of total antioxidant capacity TAC in gamma irradiated rats.	
(28)	Ameliorative effect of L-carnitine on the serum level of malondialdehyde MDA in gamma irradiated rats.	74
(29)	Ameliorative effect of L-carnitine on the serum level of cholesterol in gamma irradiated rats.	
(30)	Ameliorative effect of L-carnitine on the serum level of triglyceride in gamma irradiated rats.	78
(31)	Ameliorative effect of L-carnitine on the serum level of HDL-cholesterol in gamma irradiated rats.	79
(32)	Ameliorative effect of L-carnitine on the serum level of LDL-cholesterol in gamma irradiated rats.	
(33)	Ameliorative effect of L-carnitine on the serum levelof glucose in gamma irradiated rats.	
(34)	Ameliorative effect of L-carnitine on white blood cells concentration in gamma irradiated rats.	87

Fig.	Title	Page
(35)	Ameliorative effect of L-carnitine on platelets count	
	in gamma irradiated rats.	87
(36)	Ameliorative effect of L-carnitine on red blood cells	
	concentration in gamma irradiated rats.	88
(37)	Ameliorative effect of L-carnitine on hemoglobin	
	concentration in gamma irradiated rats.	88
(38)	Ameliorative effect of L-carnitine on hematocrit (%)	
	in gamma irradiated rats.	89
(39)	Ameliorative effect of L-carnitine on reticulocytic	
	count in gamma irradiated rats	89
(40)	A photomicrograph of heart" Control group"	
	showing apparently healthy myocardial muscles	
	$(H\&E \times 400).$	91
(41)	A photomicrograph of heart" L-carnitine treated-	
	group" showing apparently normal myocardium	
	(<i>H&E</i> X400).	91
(42)	A photomicrograph of heart" irradiated group"	
	showing intramuscular edema (arrow) together with	
	leucocytic cells infiltrations (arrow head) (H&E X	
	400).	92
(43)	A photomicrograph of heart" Irradiated group	
	treated with L-carnitine"showing apparently healthy	
	myocardial muscles (<i>H&E</i> X 400).	92
(44)	A photomicrograph of heart" Irradiated group	
	pretreated with L-carnitine"showing improvement in	
	cardiac muscle fibers (<i>H&E</i> X 400).	93

List of Abbreviations

AC	Acyl-carnitine
ADH	Alcohol dehydrogenase
ADP	Adenosindiphosphate
ALC	Esterified L-carnitine
ALDH	Aldehyde dehydrogenase
AR	Aldose reductase
AST	Aspertate amino trasferase
ATP	Adenosin triphosphate
BB	Butyrobetaine
BBD	Butyrobetainedioxygenase
CACT	Carnitine-acylcarnitinetranslocase
CAT	Catalase
Ch	Cholesterol
CoA-SH	Coenzyme A
COT	Carnitineoctanoyltransferase
CPK	Creatine phosphokinase
CPK-MB	Creatine phosphokinase myokard band
CPT	Carnitinepalmitoyltransferase
CPT-1	Carnitinepalmitoyltransferase 1
CPT-1A	Carnitinepalmitoyltransferase 1 (liver)
CPT-1B	Carnitinepalmitoyltransferase 1 (muscle)
CPT-1C	Carnitinepalmitoyltransferase 1 (brain)
CPT-2	Carnitinepalmitoyltransferase 2
CrAT	Carnitineacetyltransferase
cTnI	Cardiac troponin I
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
FC	Free carnitine
GPx	Glutathione peroxidase
GSH	Glutathione
GST	Glutathione S-transferase
H&E	Hematoxylin and eosin

$List\ of\ Abbreviations\ ({\tt Cont.})$

	Zibt of fibble viations (cont.)
HMG-CoA	(3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase	reductase
H_2O_2	Hydrogen peroxide
Hb	Hemoglobin
Hct %	Hematocrit percentages
HDL	High density lipoprotein
HDL-c	High density lipoprotein cholesterol
HF	Heart failure
HNE	4-Hydroxynonenal
HO ₂	Hydroperoxyl
HTML	Hydroxytrimethyllysine
HTN	Hypertension or high blood pressure
IHD	Ischemic heart disease
IMM	Inner mitochondrial membrane
L·	Lipid radical
LC	L- carnitine
LCFAs	Long chain fatty acids
LDH	Lactate dehydrogenase
LDL	Low-density lipoprotein
LDL-c	Low density lipoprotein cholesterol
roo.	Lipid peroxy radical
LOOH	Lipid hydroperoxide
MCD	Muscular carnitine deficiency
MDA	Malondialdehyde
MI	Myocardial infarction
mtDNA	mitochondrial DNA
NAD^+	Oxidized nicotinamide adenine dinucleotide
NADPH	Nicotinamide adenine dinucleotide phosphate
nDNA	nuclear DNA
NO'	Nitric oxide
NOSs	Especially nitric oxide synthases
O_2	Oxygen
O_2	Superoxide anion

List of Abbreviations (Cont.)

Octn1, Octn2	Organic cation/carnitine transporters
& Octn3	
OCTN2	Organic cation/carnitine transporter 2
OFR	Oxygen-free radicals
ОН,	Hydroxyl
OMM	Outer mitochondrial membrane
ox-LDL	Oxidized low-density lipoprotein
PLP	pyridoxal phosphate (the active form of vitamin B ₆)
PLs	Phospholipids
PUFAs	Especially polyunsaturated fatty acids
RBCs	Red blood corpuscles
RIHD	Radiation induced heart disease
RNA	Ribonuclic acid
RNI	Reactive nitrogen intermediate
RNS	Reactive nitrogen species
RO'	Alkoxyl
RO ₂ ·	Peroxyl
ROI	Reactive oxygen intermediate
ROO'	Peroxyl
ROS	Reactive oxygen species
RT	Radiation therapy
SCD	Systemic carnitine deficiency
SOD	Superoxide dismutase
TG	Triglyceride
THP	Trimethyl hydrazinium propionate
TMABA	Trimethyl aminobutyraldehyde
TMABA-DH	Trimethyl aminobutyraldehyde dehydrogenase
TML	Trimethyl lysine
TMLD	Trimethyl lysine dioxygenase
Vit C	Vitamin C
Vit. E	Vitamin E
VPA	Valproate
WBC	White blood cells

Abstract

Zeinab A. Ahmed

B.Sc. Fac. Sci. Ain Shams Univ., 2003.

The potential role of L-carnitine against cardio and haematotoxicity of gamma radiation in male albino rats.

<u>**Key words**</u>: cardiotoxicity, haematotoxicity, total antioxidant capacity, oxidative stress, L-carnitine.

The current study was designed to examine the beneficial effect of pre or post-irradiation of oral intake of L-carnitine (300 mg/kg of B. Wt.) in preventing the cardiotoxicity, haematotoxicity, oxidative stress, disturbed lipid profile and hypoglycemia caused by exposure to a single dose of 6Gy gamma radiation in male albino rats. The rats were arranged equally into 5 groups (10 rats in each group): control, L-carnitine, irradiated, irradiated group treated with L-carnitine and irradiated group pretreated with L-carnitine. After 21 days of irradiation CK, CK-MB, AST, LDH, troponin-I, total antioxidant, MDA, cholesterol, triglyceride, HDL-c, LDL-c and glucose were evaluated from serum and blood elements were assumed from blood in addition to histological examination of the heart.

Whole body γ -irradiation led to a significant elevation in the levels of cardiac enzymes (CK, CK-MB, AST and troponin I), MDA, cholesterol, TG, LDL-c and reticulocytic count and a significant decrease in serum level of LDH enzyme, HDL-c, glucose and blood element (WBCs, platelets, RBCs, Hb and Hct) as compared to their corresponding normal control group with remarkable changes in the heart histology.

Administration of L-carnitine to rats before and after γ -irradiation led to improvement of the studied parameters that were altered due to radiation exposure. The cardiac enzymes, MDA, cholesterol, TG, LDL-c showed more significant decrease in the irradiated group treated with L-carnitine compared to the pre-irradiated one while, Hb, WBCs and platelets experienced significant increase in the second group compared to the first leading to the suggestion that combination of pre and post intake of L-carnitine in irradiated rats is recommended to protect radio-resistant and radio sensitive organs as well.

Introduction

Radiotherapy is frequently used as a part of cancer treatment to achieve tumor control. Over the last half century, radiation therapy (RT) has evolved to become one of the cornerstones of treatment for various types of cancers. It is estimated that more than 50% of patients with cancer are treated with radiotherapy (Yusuf et al., 2011).

Although radiotherapy treatment has been widely used as an effective tool to kill tumor cells, it might produce harmful effects to surrounding healthy tissues (Sezen et al., 2008 and Ostrau et al., 2009). It is well known that ionizing radiations induce oxidative stress on target tissues, mainly through the generation of reactive oxygen species (ROS) resulting in imbalance of the prooxidant antioxidant equilibrium in the cells. It also attacks diverse cellular macromolecules such as DNA, lipids and proteins, eventually inducing cell death (Boerma and Hauer- Jensen, 2011).

The heart is a vital organ and generates intense oxidative imbalances because of its intense activity. Moreover, the heart presents a less potent antioxidant system when compared to other body tissues (de Freitas *et al.*, 2013).

During radiotherapy (RT) of mediastinal tumours (lymphomas, breast cancer, and lung cancer), frequently a part of the heart is included in the treatment field and may receive significant doses of ionizing radiation (Hilbers *et al.*, 2012). Clinical reports indicated that a considerable number of patients who receive this therapy develop cardiovascular complications.