MICROROUGHNESS AND BACTERIAL ADHESION OF MONOLITHIC ZIRCONIA AND LITHIUM DISILICATE VENEERS WITH DIFFERENT FINISHING TECHNIQUES AND MARGIN DESIGNS

THESIS SUBMITTED TO FACULTY OF DENTISTRY
AINSHAMS UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIRMENTS FOR
DOCTOR DEGREE IN FIXED PROSTHODONTICS

BY

MOHAMED ADEL ANWAR ABDELAZIZ

Assistant lecturer of fixed prosthodontics Faculty of Dentistry, Assiut university

> AIN SHAMS UNIVERSITY 2017

Supervisors

Prof. Tarek Salah Morsi

Professor & Head of Fixed Prosthodontics department FACULTY OF DENTISTRY AIN SHAMS UNIVERSITY

Ass. Prof. Amr Saleh EL-Etreby

Associate professor of Fixed Prosthodontics FACULTY OF DENTISTRY AIN SHAMS UNIVERSITY

Dedication

To the most precious, supportive, and sincere people in my life

To my family

"Without your endless love and encouragement, I would have never been able to be who I am or where I am Thanks for supporting me throughout the rough way"

Acknowledgement

First of all, I feel thankful to Allah for giving me the guidance and internal support in all my life and in every step that I made until this study was completed.

I would like to express my appreciation to Dr. Tarek Salah Morsi

Professor and Head of Fixed Prosthodontics Department,

Faculty of Dentistry, Ain Shams University for his valuable ideas, stimulating discussions, enlightening guidance, and keen supervision that he has kindly given me throughout the research program, which was instrumental in achieving the completion of this study.

Also I would like to express my appreciation to **Dr. Amr Saleh El- Etreby** associate professor of Fixed Prosthodontics Faculty of
Dentistry Ain Shams University, for his great help and constant
support in the completion of this study.

List of CONTENTS

	Page
List of Tables	i
List of Figures	iv
Introduction	1
Review of Literature	3
Aim of the study	32
Materials and Methods	33
Results	70
Discussion	102
Summary	111
Conclusion	112
References	113
Arabic Summary	

List of tables

Table (1) Materials used in this study. Page 34
Table (2) Samples grouping. 36
Table (3) Description of mean and standard deviation of surface roughness
(Ra) of all laminates71
Table (4) Description of mean and standard deviation of bacterial adhesion
(CFU/ml) of all laminates
Table (5) Effect of variables (margin design, material and finishing method)
on bacterial adhesions and surface roughness
Table (6) Comparison of surface roughness between different Finishing
methods
Table (7) Comparison of bacterial adhesions between different Finishing
methods
Table (8) Comparison the surface roughness between laminates made from
different materials80
Table (9) Comparison the bacterial adhesions between laminates made from
different materials
Table (10) Comparison the surface roughness between different Margin
designs88
Table (11) Comparison bacterial adhesion between different Margin designs
93
Table (12) Results of the correlation between surface roughness (Ra) and
bacterial count

List of Figures

Figure (1) Express TM STD VPS Putty impression material	. 37
Figure (2) Amount of laminate reduction. Figure (3) Duplicating material	
Figure (4) Epoxy resin material	39
Figure (5) Pouring epoxy resin material into molds	40
Figure(6) Samples after removal from molds	.40
Figure (7) Scanning of master sample using Identica blue scanner	41
Figure (8) Defining job details	43
Figure (9) Determining scan depth	44
Figure (10) Scan data,	44
Figure (11) Setting numeric parameters.	45
Figure (12) Margin line detection	45
Figure (13) Setting insertion axis	45
Figure (14) Designing the laminate	46
Figure (15) CAM software (Nesting and spruing)	46
Figure (16) Katana zirconia blank (A) before milling and (B) after milling	47
Figure (17) Ceramill therm furnace for zirconia sintering	47
Figure (18) Laserdenta milling machine CAM	48
Figure (19) Ring before and after investment pouring	49
Figure (20) Renfert Vacuum mixer	49

Figure (21) EP3000 press furnace	51
Figure (22) Divesting.	51
Figure (23) Laminates finished after separation from sprues	51
Figure(24) Glazing of Lithium disilicate laminates	53
Figure (25) Sandblasting of epoxy resin	56
Figure (26) Laminates in ultrasonic cleaner	55
Figure (27) Etching of the fitting surface of laminates	55
Figure (28) Silane application.	56
Figure (29) Seating of laminates	56
Figure (30) Laminates after cementation and removal of cement exc	ess56
Figure (31) Soflex finishing kit	57
Figure (32) Optrafine finishing kit	59
Figure (33) Surface roughness measuring technique using profilome	eter61
Figure (34) sputter-coating device with gold-palladium alloy	62
Figure (35) scanning electron microscopy	62
Figure (36) Filtration of saliva with a cellulose acetate filter	63
Figure (37) Tryptone Soya Broth	64
Figure (38) Adjusting optical density of the buffer spectrophotometer65	
Figure (39) Centrifugation of broth Figure (40) Micro-pipette	
Figure (41) General purpose bacteriological incubator. Figure (42) Maxi-Mix III type 65800 vortex shaker	
Figure (43) Mitis-salivarius agar Figure (44) Solidified Mitis-salivarius agar in petri dish	
Figure (45) Colony counting using the colony counter	68

Figure (46) Bar chart describes the surface roughness when different
finishing methods used to finish zirconia and lithium disilicate laminates
made on vertical margin design
Figure (47) Box plot describes the effect of finishing methods on surface
roughness of (A) Zirconia laminates and (B) Lithium disilicate laminates
made on vertical margin design
Figure (48) Bar chart desribes the surface roughness when different
finishing methods used to finish zirconia and lithium disilicate laminates
made on horizontal margin design
Figure (49) Box plots illustrates the effect of finishing methods on surface
roughness of (A)Zirconia laminates and (B) Lithium disilicate laminates
made on horizontal margin design
Figure (50) Bar chart describes the bacterial adhesion when different
finishing methods used to finish zirconia and lithium disilicate laminates
made on vertical margin design
Figure (51) Box plot illustrates the effect of finishing methods on bacterial
adhesion of (A)Zirconia laminates and (B) Lithium Disilicate laminates
made on vertical margin design
Figure (52) Bar chart describes the bacterial adhesion when different
finishing methods used to finish zirconia and lithium disilicate laminates
made on horizontal margin design
Figure (53) Box plot illustrates the effect of finishing methods on bacterial
adhesion of (A)Zirconia laminates and (B) Lithium disilicate laminates made
on horizontal margin design
Figure (54) Bar chart describes the comparison in surface roughness of
zirconia and lithium disilicate laminates made on vertical margin design
when different finishing methods used (Glazed GZ ,Optrafine OF ,Sof-Lex
SL)80

Figure (55) Box plot illustrates the effect of material on surface roughness of
glazed laminates made on vertical margin design
Figure (56) Box plot illustrates the effect of material on surface roughness
of Soflex finished laminates made on vertical margin design81
Figure (57) Box plot illustrates the effect of material on surface roughness of
Optra fine finished laminates made on vertical margin design81
Figure (58)) Bar chart describes the comparison in surface roughness of
zirconia and lithium disilicate laminates made on horizontal margin design
when different finishing methods used (Glazed GZ, Optrafine OF, Sof-Lex
SL)82
Figure (59) Box plot illustrates the effect of material on surface roughness of
glazed laminates made on horizontal margin design
Figure (60) Box plot illustrates the effect of material on surface roughness of
Soflex finished laminates made on horizontal margin design83
Figure (61) Box plot illustrates the effect of material on surface roughness of
Optrafine finished laminates made on horizontal margin design83
Figure (62) Bar chart describes the comparison in bacterial adhesion of
zirconia and lithium disilicate laminates made on vertical margin design
when different finishing methods used (Glazed GZ ,Optrafine OF ,Sof-Lex
SL)84
Figure (63) Box plot illustrates the effect of material on bacterial adhesion
of glazed laminates made on vertical margin design85
Figure (64) Box plot illustrates the effect of material on bacterial adhesion
of Soflex finished laminates vertical margin design85
Figure (65) Box plot illustrates the effect of material on bacterial adhesion
of Optrafine finished laminates vertical margin design86
Figure (66) Bar chart describes the comparison in bacterial adhesion of
zirconia and lithium disilicate laminates made on horizontal margin design

when different finishing methods used (Glazed GZ ,Optrafine OF ,Sof-Lex
SL)86
Figure (67) Box plot illustrates the effect of material on bacterial adhesion
of glazed laminates horizontal margin design
Figure (68) Box plot illustrates the effect of material on bacterial adhesion
of Soflex finished laminates horizontal margin design87
Figure (69) Box plot illustrates the effect of material on bacterial adhesion
of Optrafine finished laminates vertical margin design
Figure (70) Bar chart describes the comparison in surface roughness of
zirconia laminates made on different margin design when different finishing
methods used (Glazed GZ ,Optrafine OF ,Sof-Lex SL)89
Figure (71) Box plot illustrates the effect of margin design on surface
roughness of glazed zirconia laminates
Figure (72) Box plot illustrates the effect of margin design on surface
roughness of Soflex finished zirconia laminates
Figure (73) Box plot illustrates the effect of margin design on surface
roughness of Optrafine finished zirconia laminates90
Figure (74) Bar chart describes the comparison in surface roughness of
lithium disilicate laminates made on different margin design when different
finishing methods used (Glazed GZ ,Optrafine OF ,Sof-Lex SL)91
Figure (75) Box plot illustrates the effect of margin design on surface
roughness of glazed Lithium disilicate laminates
Figure (76) Box plot illustrates the effect of margin design on surface
roughness of Soflex finished Lithium disilicate laminates92
Figure (77) Box plot illustrates the effect of margin design on surface
roughness of Optrafine finished Lithium disilicate laminates92

Figure (78) Bar chart describes the comparison in bacterial adhesion of
zirconia laminates made on different margin design when different finishing
methods used (Glazed GZ ,Optrafine OF ,Sof-Lex SL)93
Figure (79) Box plot illustrates the effect of margin design on bacterial
adhesion of glazed Zirconia laminates
Figure (80) Box plot illustrates the effect of margin design on bacterial
adhesion of Soflex finished Zirconia laminates94
Figure (81) Box plot illustrates the effect of margin design on bacterial
adhesion of Optrafine finished Zirconia laminates95
Figure (82) Bar chart describes the comparison in bacterial adhesion of
lithium disilicate laminates made on different margin design when different
finishing methods used (Glazed GZ ,Optrafine OF ,Sof-Lex SL)95
Figure (83) Box plot illustrates the effect of margin design on bacterial
adhesion of glazed Lithium disilicate laminates96
Figure (84) Box plot illustrates the effect of margin design on bacterial
adhesion of Soflex finished Lithium disilicate laminates96
Figure (85) Box plot illustrates the effect of margin design on bacterial
adhesion of Optrafine finished Lithium disilicate laminates97
Figure (86) Scatter Histogram of the correlation between Ra and Bacterial
count98
Figure (87) SEM micrographs of glazed Zirconia laminate surface at (A)
100x (B) 2000x99
Figure (88) SEM micrographs of Zirconia laminates surface after polishing
with Optrafine system at (A) 100x (B) 2000x99
Figure (89) SEM micrographs of Zirconia laminates surface after polishing
with Soflex system at (A) 100x (B) 2000x100
Figure (90) SEM micrographs of lithium disilicate laminates surface after
glazing at (A) 100x (B) 2000x100

Figure (91) SEM micrographs of lithium disilicate laminates surface after
polishing using Optrafine finishing system at (A) 100x (B) 2000x101
Figure (92) SEM micrographs of lithium disilicate laminates surface after
polishing using Soflex finishing system at (A) 100x (B) 2000x101

Introduction

Dental ceramics are the most natural appearing replacement material for missing tooth substance available in a range of shades and translucencies to achieve natural like appearance. The increased popularity of ceramic materials is attributed to their excellent aesthetics, chemical stability and biocompatibility ⁽¹⁾. It also provide smooth surface that is easily cleaned and not highly susceptible to surface staining resulting in less bacterial adhesion.

In the clinic the dentist often needs to adjust final restoration by grinding the outer surface before insertion which results in breaking the glazed layer producing a rough surface that needs reglazing or polishing. Some studies suggested that a polished surface may be as acceptable as a glazed surface ⁽²⁾. Many ceramists prefer polishing instead of glazing, to control the surface luster. Some authors found that the fracture toughness of polished porcelain was greater than that of glazed porcelain and both types of finish equally resist staining by coffee ⁽³⁾.

Accumulation of bacteria on marginal area of enamel and restorative material may lead to periodontal disease or secondary caries which represent primary reason for restoration replacement. So every effort should be made to prevent plaque or even minimize plaque accumulation on restorative materials. (4)

The formation of oral biofilms has been closely correlated with the occurrence of oral diseases ⁽⁵⁾. Thus, it is obvious that extensive plaque formation on dental restorations may contribute to the occurrence of secondary caries lesions or induces periodontal inflammation, which indicates the demand for dental materials with low susceptibility to biofilm

formation. Numerous factors influencing dental plaque formation, surface roughness (Ra) and surface free energy have been regarded as the most important factors ⁽⁶⁾. The formation of the salivary pellicle, i.e. the adsorption of salivary constituents to tooth and restorative surfaces, is regarded as the first step in plaque formation. The pellicle plays a decisive role in microbial adhesion as its constituents may interact with oral microorganisms, either by direct interaction with receptors located on the microorganisms, or indirectly by influencing the thermodynamic conditions for microbial adhesion. Pellicle formation is followed by the adhesion of facultative anaerobic pioneer bacteria such as Streptococcus gordonii, streptococcus oralis and Streptococcus sanguinis ⁽⁷⁾. Early colonizing bacteria play a pivotal role for the subsequent adhesion of cariogenic microorganisms such as Streptococcus mutans and periodontal pathogens such as Tannerella forsythensis, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, which may induce gingival and periodontal inflammation ⁽⁸⁾.