The Effect of Day 6 Endometrial Injury of the Same ICSI Cycle on the Pregnancy Rate

(Randomized Controlled Trial)

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By Rasha Fathalla El Mohamady Arafat

M.B., B.CH.
Tanta University 2009
Resident of Obstetrics and Gynecology
Damnhour Teaching Hospital

Under Supervision of

Dr. Yasser Mohamed Abou-Talib

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Moustafa Ibrahim Ibrahim

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Ahmed Sherif Abd-Flhamid

Lecturer of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Table of Contents

List of Abbreviations	I
List of Tables	V I
List of Figures	VII
Introduction	1
Aim of the Work	4
Review of Literature	
- Chapter (1): ICSI is the Solution	5
- Chapter (2): Endometrial Receptivity and Implantation	n14
- Chapter (3): Strategies for Improving Endometrial	
Receptivity	63
- Chapter (4): Inflammation and Implantation	71
Patients and Methods	77
Results	85
Discussion	100
Summary	106
Conclusion	110
References	111
Arabic Summary	

First of all, I would like to express my deepest gratitude to "ALLAH" the most Merciful who is praised for all his favors and blessings.

I would like to express my highest gratitude and thank to **Dr. Yasser Mohammed Aboutalib,** Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for giving me privilage of working under his instructive and helpful guidance.

I would like also to express my sincere appreciation and thanks to **Dr. Moustafa Ibrahim Ibrahim**, Assistant Professor of Obstetrics & Gynecology, Ain Shams University, For spending time and effort to help me in this work.

I also wish to express my deep thanks to **Dr. Ahmed Sherif Abd-Elhamid**, Lecturer of Obstetrics & Gynecology, Faculty of Medicine Ain Shams University, for his kind advice, constant supervision, meticulous revision of the study.

Also I wish to thanks **Dr. Azza Awad**, Laboratory Director at IVF Unit, Ain Shams University, to her great help in Laboratory work.

Finally, I would like to thank my family, friends for their great support to me in this work.

Rasha Arafat

List of Abbreviations

Abb.	Full term
AFC	Antral follicle count
AH	Assisted hatching
AMH	Anti-Müllerian hormone
Ang-1	Angiopoietin-1
APC	Antigen presenting cells
ART	Assisted reproductive technique
ASRM	American Society for Reproductive Medicine_
BMI	Body mass index
CAM	Cell adhesion molecule
cAMP	Cyclic adenosine monophosphate
CCCT	Clomiphene citrate challenge test
CG	Chorionic gonadotrophin
CL	Corpus luteum
CLC	Cardiotropin-like cytokine
CLF	Cytokine-like factor
CNTF	Ciliary neurotropic factor
СОН	Controlled ovarian hyperstimulation
Col	Collagens
CSF-1	Colonystimulating factor-1
CT	Cardiotrophin
DBD	DNA-binding domain
DCS	Dendrtic cells
DET	Double-embryo transfer
DHEA	Dehydroepiandrosterone
DOR	Diminished ovarian reserve
E2	Serum estradiol
ECF	Endometrial cavity fluid
EFORT	Exogenous FSH ovarian reserve test

Abb.	Full term
EGF	Epidermal growth factor
eNOS	Endothelial nitric oxide synthase
ERE	Estrogen response elements
ERR	Estrogen receptor related
ESC	Endometrial stromal cell
ESR	Estrogen receptors
EST	Estrogen sulphotransferase
ET	Embryo transfer
EVT	Extravillous trophoblast cells
FGF7	Fibroblast growth factors-7
FISH	Fluorescence <i>in situ</i> hybridization
FN	Fibronectin
FSH	Follicle-stimulating hormone
GAST	GnRH agonist stimulation test
GIFT	Gamete intrafallopian transfer
GnRH	Gonadotrophin-releasing hormone
GnRHa	Gonadotropin releasing hormone agonist
GPRCs	G protein coupled receptors
HAI-1	Hepatocyte growth factor activator inhibitor type I
HBD	Hormone-binding domain
HB-EGF	Heparin-binding epidermal growth factor
HCG	Human chorionic gonadotropine
HGF	Hepatocyte growth factor
HLA	Human leukocyte antigen_
HLA	Human leukocyte antigen
hMG	human Menopausal gonadotropine
hPL	Human placental lactogen
HSD	Hydroxysteroid dehydrogenases
ICSI	Intracytoplasmic sperm injection
IFN	Interferon

Abb.	Full term
IGFBP-1	Insulin-like growth factor binding protein-1
IGF-BPs	Insulin like growth factor binding proteins
IGF-I	Insulin-like growth factor-1
IL-1	interleukin-1
IL-6	Interleukin-6
IVF	In vitro fertilization
JAK	Janus kinase
KLRC1	Killer cell lectin-like receptor subfamily C, member 1
KLRD1	Killer cell lectin-like receptor subfamily D, member 1
LBD	Ligand binding domain
LH	Luteinizing hormone
LIF	Leukaemia inhibitory factor
LN	Laminin
MESA	Microsurgical epididmal sperm aspiration
МНС	Major histocompatibility complex
MMPs	Matrix metalloproteinases
MOS	Macrophage
MUC-1	Mucin-1
NK	Natural killer
NO	Nitric oxide
NOS	NO synthase
NR	Nuclear receptors
OHSS	Overian hyperstimulation syndrom
OSM	Oncostatin M
P	Progesterone
PA	Plasminogen activator.,.
PAI	Plasminogen activator inhibitor
PAI-1	Plasminogen activator inhibitor-1
PCOS	Polycystic ovary syndrome
PCOS	Polycystic ovary syndrome

Abb.	Full term
PCR	POLYMERASE chain reaction
PCT	Post coital test
PGD	Pre-implantation genetic diagnosis
PGS	Preimplantation genetic screening
PKA	Protein kinase
PP14	Placental protein 14
PR	Progesterone receptor
PRs	Progesterone receptors
PSV	Peak systolic velocity
rFSH	Recombinant follicle stimulating hormone
SART	Society for Assisted Reproductive Technologies
SER	Smooth endoplasmic reticulum
SERMs	Selective estrogen receptor modulators
SET	Single- embryo transfer
SFRE	Steroidogenic factor-1 response elements
sGE	Superficial glandular epithelia
SHBG	Sex hormone-binding globulin
SOCS	Suppressors of cytokine signalling
StAR	Steroid acute regulatory protein
STAT	Signal transducer and activator of transcription
STS	Steroid sulfatase
TAF	transcriptional activation function
TESE	Testicular sperm extraction
TET	Tubal embryo transfer
TGFβ1	Transforming growth factor β1
Th	T helper cell
TIMPs	Tissue inhibitors of matrix metalloproteinases
TNF	Tumor necrosis factor
UBF	Uterine blood flow
uFSH	Urinary follicle stimulating hormone

Abb.	Full term
uNK	Uterine natural killer
uPA	Urokinase-type plasminogen activator
VEGF	Vascular endothelial growth factor
VN	Vitronectin
VSMC	Vascular smooth muscle cells
woi	window of implantation
ZIFT	Zygote intrafallopian transfer

List of Tables

Table	Title	Page
1	Characteristics of both study groups	85
2	Results of hormonal assay in both study	86
	groups	
3	Antral follicle count (AFC) and endometrial	87
	thickness in both study groups	
4	Maturation, fertilization, and division rates	88
	in both study groups	
5	Pregnancy and implantation rates in both	89
	study groups	
6	Biochemical pregnancy rate in women with	92
	or without endometrial injury as stratified	
	for age	
7	Clinical pregnancy rate in women with or	95
	without endometrial injury as stratified for	
	age	
8	Multivariable binary logistic regression	98
	analysis for determinants of biochemical	
	pregnancy	
9	Multivariable binary logistic regression	99
	analysis for determinants of clinical	
	pregnancy	

List of Figures

Figure	Title	Page
1	This egg is ready for sperm injection.	11
2	Photomicrograph of intracytoplasmic sperm injection (ICSI). An unfertilized human oocyte is immobilized with a holdingpipette (right) and injected with a single spermatozoon	12
3	Different stages of the embryo implantation	18
4	Schematic representation of an implanting blastocyst, highlighting interactions between trophoblastic and endometrial cells, including integrins, growth factors, cytokines, hormones and proteases	22
5	Schematic representation of a blastocyst approaching the receptive endometrium, defined by the integrin profile and appearance of pinopodes. Early signaling between the blastocyst and the endometrium precedes the attachment	25
6	Biomolecules with potential embryo trophic effect elaborated by implantation stage endometrium	28

Figure	Title	Page
7	(A) Epithelial cell adhesiveness by E-	34
	cadherin is controlled by intracellular	
	calcium. (B) Rising progesterone levels	
	induce calcitonin (CT) expression and thus	
	increase the concentration of intracellular	
	calcium, which then suppresses E-cadherin	
	expression at cellular contact sites	
8	Schematic representation of the most	39
	important cytokine interactions	
	surrounding the time of implantation	
9	Model for the interaction between cytokines	41
	and mediators of inflammation associated	
	with embryo implantation	
10	Biomolecules involved in embryo-	44
	endometrium dialogue during blastocyst	
	implantation with potential embryo trophic	
	action being elaborated by receptive stage	
	endometrium	
11	A schematic model which describes the	45
	nature of progesterone-induced	
	endometrial responsiveness to embryo	
	derived signals during the pre- and the peri-	
	implantation stages of gestation in the	
	human	

Figure	Title	Page
12	A model of hormonal regulation of NK cells	52
	in pregnancy	
13	Model of paracrine interaction between	62
	embryonic trophoblast cell and	
	endometrialdecidual cell during trophoblast	
	invasion	
14	Dendritic cells and macrophages create an	76
	inflammatory gradient	
15	Biochemical pregnancy rate in both study	90
	groups	
16	Clinical pregnancy rate in both study groups	91
17	Biochemical pregnancy rate in patients aged	93
	≤30 years in both study groups	
18	Biochemical pregnancy rate in patients aged	94
	>30 years in both study group	
19	Clinical pregnancy rate in patients aged ≤30	96
	years in both study groups	
20	Clinical pregnancy rate in patients aged >30	97
	years in both study groups	

The Effect of Day 6 Endometrial Injury of the Same ICSI Cycle on the Pregnancy Rate

(Randomized Controlled Trial)

Protocol of Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By Rasha Fathalla El Mohamady Arafat

M.B., B.CH.

Tanta University 2009
Resident of Obstetrics and Gynecology
Damnhour Teaching Hospital

Under Supervision of

Dr. Yasser Mohamed Abou-Talib

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Moustafa Ibrahim Ibrahim

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Ahmed Sherif Abd-Elhamid

Lecturer of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Introduction

In assisted reproductive technology, procedures for culturing and transferring embryos have been continually improved over the last two decades. Yet the clinical pregnancy rate has not substantially improved over the last ten years (currently only 32.4~33.0% per IVF transfer as reported by ESHRE in 2010) ⁽¹⁾ and many patients have suffered repeated implantation failure even in the most successful In vitro fertilization (IVF) clinics. Although no practical solutions for repeated implantation failure have emerged, an improved ability to control the endometrial environment for implantation promises to have a significant, positive impact on IVF outcomes ⁽²⁾

Although many fertility disorders have been overcome by a variety of assisted reproductive techniques, implantation remains the rate-limiting step for the success of in vitro fertilization (IVF). Implantation of the embryo, which is a prerequisite for successful pregnancy, can only take place in a receptive uterus. In humans, the uterus becomes receptive during the midsecretory phase of the menstrual cycle (days 19 to 23), commonly known as the window of implantation (WOI). It is assumed that uterine receptivity inadequate is responsible for approximately two-thirds of implantation failures (3)

A key determinant of treatment success is implantation of the embryo, which depends on two factors: the quality of the embryo and the receptivity of the

endometrium. It has been shown that endometrial receptivity could be modulated by a multitude of signaling molecules, including prostaglandins⁽⁴⁾ growth factors, cytokines, chemokines, integrins, leukemia inhibitory factor⁽⁵⁾ (6) Wnt family ligands (7) and E-cadherin (8)

The optimal window for endometrial receptivity is relatively narrow and implantation is unlikely to occur even when good quality embryos are transferred into the uterus outside this time. One of the proposed interventions designed to improve endometrial receptivity is physical injury to the endometrium and early reports suggest that it could improve the rates of implantation (27.7% versus 14.2%, P < 0.001), clinical pregnancy (66.7% versus 30.3%, P < 0.001), and live birth (48.9% versus 23.6%, P = 0.016)

The underlying mechanism of how endometrial injury improves endometrial receptivity remains unknown. Three hypotheses have been made. The first is that local injury to the endometrium induces endometrial decidualization, which increases the probability of implantation of a replaced embryo (10)

This hypothesis is based on the observation of induction of decidual tissue formation which mimics the endometrial changes of early pregnancy after mechanical endometrial stimulation with a microcurette in guinea pigs (11)

The second is that endometrial healing following injury is associated with a significant increase in the