"Potential antifibrotic effect of Deferasirox in an experimental model of liver fibrosis"

Thesis presented by:

Nada Adel Hassan Mahgoub

B.Sc. of pharmaceutical sciences (2013)

Submitted for the partial fulfillment of Master's degree in Pharmaceutical sciences

(Pharmacology and Toxicology)

Under the supervision of:

Prof. Ebtehal El-Demerdash Zaki

Professor & Head of Pharmacology & Toxicology Department
Faculty of Pharmacy
Ain Shams University

Dr. Doaa Mokhtar El-Sherbiny

Dr. Eman Mohamed Mantawy

Lecturer of Pharmacology & Toxicology
Faculty of Pharmacy
Ain Shams University

Lecturer of Pharmacology & Toxicology
Faculty of Pharmacy
Ain Shams University

Faculty of Pharmacy-Ain Shams University (2017)

وقالوا ألحكم دُلِكِ اللّهِ اللّهُ الل

<u>Acknowledgments</u>

First of all, my gratefulness and appreciation goes to **ALLAH**. His guidance and countless blessings are the basis of everything I have ever achieved in my life. No words are enough to express my gratitude and indebtness.

I would like to pay special thankfulness, warmth, and appreciation to the persons below who made my research successful and assisted me at every point to cherish my goal:

Professor Ebtehal El Demerdash; Professor and Head of the Pharmacology and Toxicology department, Faculty of Pharmacy, Ain Shams university. Thanks for introducing me to the topic and your support on the way. Your knowledge and advice have helped me to keep on track and work at a smooth pace.

Dr. Doaa El Sherbiny; Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University. Thanks for your support and helpful guidance.

Dr. Eman M. Mantawy; Lecturer of pharmacology and toxicology, Faculty of Pharmacy, Ain Shams University. My mentor and friend, I am greatly indebted to you, your selfless time and limitless care and help always kept me going. Definitely, your support and assistance proved to be a milestone in the accomplishment of my end goal.

I also wish to present my special thanks to all Pharmacology and Toxicology department members and technicians whose support and services turned my research a success. Special thanks for Dr. Ahmed Esmat, Dr. Sara Wahdan, Reem Tarek, and Nermeen El Agroudy for their distinguished efforts and help through the practical work.

Finally, I must express my very profound gratitude to my parents, my brother; Mohamed, my sisters; Nahla and Noha, my husband; Islam, and my lovely daughter; Eleen, for providing me with support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without You. Thanks to the moon and back.

Nada Adel Hassan

Abstract

Hepatic iron overload is one of the main causative factors for liver fibrosis and is observed in chronic hepatitis C patients, hemochromatosis patients, and patients with different blood disorders as myelodysplastic syndrome, and β-thalassemia. In the present study, we aimed to investigate the potential anti-fibrotic effect of the iron chelator; deferasirox (DFX), in an experimental model of immunologically-induced liver fibrosis using concanavalin A (con A). The study was divided into 2 parts. Firstly, the hepatoprotective dose of DFX was screened by giving DFX at doses 25, 50, and 100 mg/kg orally to rats followed by IV injection of con A 2 hours later. Con A induced significant hepatotoxicity as manifested by elevated liver enzymes' activities in serum, in addition to histopathological damage. Only DFX at the dose 100 mg/kg could offer considerable hepatoprotection and restore histopathological integrity.

The second part of the study was carried out to explore the possible molecular mechanisms underlying the hepatoprotective and antifibrotic effect of DFX. Rats were randomly divided into 4 groups. The first group was considered as the control group and received vehicles only. The second group was injected with con A (15 mg/kg, IV) once/week for 6 weeks to induce liver fibrosis. The third group was given DFX (100 mg/kg, P.O.) 3 times/week in addition to con A injection (15 mg/kg, IV) once/week, and the last group was given DFX only (100 mg/kg, P.O.) 3 times/week. Con A injection induced significant hepatotoxicity. Additionally, it caused serum and hepatic iron overload *via* increasing CHOP, and decreasing P-CREB and hepcidin levels in hepatic tissues. This in turn precipitated oxidative stress status as was evident by the upregulated gene expression of NOX4 and p22^{phox}, together with marked reduction in anti-oxidant enzymes' activities including superoxide dismutase and catalase. Consequently, the inflammatory cascade was switched on beginning with the upregulation of NF-κB that ultimately induced the transcription of various downstream inflammatory mediators; mainly iNOS, TNF-α, and IFN-γ.

All those events eventually led to activation of HSCs as shown by the elevated expression of α -SMA, resulting in excessive collagen deposition and hence, liver fibrosis. Co-treatment with DFX showed significant hepatoprotective effect, and antifibrotic effect through decreasing iron overload, antioxidant, and anti-inflammatory effects. Collectively, these findings imply that DFX can be a promising candidate for halting the progression of hepatic fibrosis.

Keywords:

Liver fibrosis, Concanavalin A, Deferasirox, Hepcidin, P-CREB, CHOP

Index

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	V
List of Figures	VI
Review of Literature:	
1. Liver Fibrosis.	1
1.1. Etiology of liver fibrosis.	2
1.2. Diagnosis of liver fibrosis.	5
1.3. Pathogenesis of liver fibrosis.	8
1.4. Therapeutic approaches of liver fibrosis.	20
2. Iron homeostasis and iron overload.	23
3. Deferasirox.	34
4. Concanavalin A model of liver fibrosis	40
Aim of the work	44
Materials and Methods:	
 Experimental design. 	45
 Materials. 	49
• Methods.	62
Results	123
Discussion	167
Summary and Conclusion	173
References	178
Arabic Summary	Í

List of Abbreviations

ALT	Alanine aminotransferase
ANOVA	Analysis of variance
AST	Aspartate aminotransferase
BCG	Bromocresol green
BSA	Bovine serum albumin
cAMP	Cyclic adenosine monophosphate
CAT	Catalase
C/EBP	CCAAT enhancer binding protein
СНС	Chronic hepatitis C
СНОР	C/EBP homologous protein
Con A	Concanavalin A
COX-2	Cyclooxygenase-2
CREB	cAMP responsive element binding protein
C_{t}	Cycle threshold
DFX	Deferasirox
DMSO	Dimethyl sulfoxide
dNTPs	Deoxyribonucleotide triphosphate
DTNB	5,5'-Dithio-bis (2-nitrobenzoic acid) [Ellman's reagent]
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra-acetic acid
EGF	Endothelial growth factor
ELISA	Enzyme-Linked Immunosorbent Assay
EMT	Epithelial mesenchymal transition
ERK	Extracellular signal-regulated kinase

I

ET-1	Endothelin-1	
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	
GSH	Reduced glutathione	
HAMP	Hepcidin antimicrobial peptide	
HBV	Hepatitis B virus	
НСС	Hepatocellular carcinoma	
HCl	Hydrochloric acid	
HCV	Hepatitis C virus	
Н & Е	Hematoxylin and eosin	
HFE	High Fe	
HIF	Hypoxia inducible factor	
HIV	Human immunodeficiency virus	
H_2O_2	Hydrogen peroxide	
HRP	Horseradish peroxidase	
HSCs	Hepatic Stellate cells	
IFN-γ	Interferon gamma	
IGF	Insulin-like growth factor	
IL-6	Interleukin-6	
iNOS	Inducible nitric oxide synthase	
I.V.	Intravenous	
KCs	Kupffer cells	
LPS	Lipopolysaccharides	
MAPK	Mitogen-activated protein kinase	
MCP-1	Monocyte chemoattractant protein 1	
MDA	Malondialdehyde	

MMPs	Matrix metalloproteinases	
mRNA	Messenger RNA	
NADPH	Nicotinamide adenine dinucleotide phosphate	
NASH	Non-alcoholic steatohepatitis	
NF-ĸB	Nuclear factor-kappa B	
NO	Nitric oxide	
NO_2^+	Nitronium ion	
NOX-4	NADPH oxidase-4	
O_2	Superoxide	
OH.	Hydroxyl radical	
ONOO-	Peroxynitrite	
PBS	Phosphate-buffered saline	
PCR	Polymerase chain reaction	
PDGF	Platelet-derived growth factor	
PI3-K	Phosphatidylinositol 3-kinase	
PMS	Phenazine methosulphate	
P.O.	Per oral	
PPAR-γ	Peroxisome proliferator-activated receptor gamma	
PPIs	Protease and phosphatase inhibitors	
qRT-PCR	Quantitative reverse transcriptase polymerase chain reaction	
RNase	Ribonuclease	
ROS	Reactive oxygen species	
RQ	Relative quantitation	
α-SMA	Alpha-smooth muscle actin	
SOD	Superoxide dismutase	