Lidocaine Infusion on Hysteroscopic Media versus Oral Diclofenac for Pain Relief during Outpatient Hysteroscopy A Randomized Controlled Trial

Thesis

Submitted for Partial Fulfillment of Master's Degree in Obstetrics and Gynecology

By

Ahmed Hamdy Gouda Aboutabl

M.B.,B.Ch.(2011), Ain Shams University Resident of Obstetrics & Gynecology at Al Galaa Maternity Teaching Hospital

Under Supervision of

Prof. Hatem Hussein El-Gamal

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Ahmed Elsayed Hassan Elbohoty

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Mortada Elsayed Ahmed

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Hatem Hussein El- Gamal**, Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Elsayed Hassan Elbohoty**, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mortada Elsayed Ahmed**, Lecturer of Obstetrics and Gynecology,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ahmed Hamdy Gouda Aboutabl

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	3
Review of Literature	
o Hysteroscopy	4
o Neuroanatomy of Pelvic Pain	26
o Lidocaine	46
o Diclofenac	53
Patients and Methods	56
Results	70
Discussion	79
Summary	86
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Age, body mass index, duration of procedure and indications	
	hysteroscopy of the two studied gr	roups7
Table (2):	Pain score and adverse effects is	n the
	two studied groups	73
Table (3):	The Patient's satisfaction	76

List of Figures

Fig. No.	Title Page 1	No.
Figure (1):	Typical instruments feature two	
	sheaths, one for irrigation and another	_
T (0)	for suction	
Figure (2):	Karl Storz flexible hysteroscope	
Figure (3):	Xenon lighting system	7
Figure (4):	Bipolar continuous-flow resectoscope for	
	intrauterine electrosurgery (22 Fr. in	0
T. (T)	diameter).	
Figure (5):	FIGO classification system (PALM-	
E' (0)	COEIN)	13
Figure (6):		1 -
E' (7)	leiomyoma	
Figure (7):	Leiomyoma subclassification system	16
Figure (8):	Hysteroscopic view of an endometrial	17
E' (0).	polyp	
Figure (9):	Hysteroscopic view of dense synechiae	18
Figure (10):	The anterior peripheral nerves of the	07
Figure (11).	lower abdomen, pelvis, and thigh	Z 1
Figure (11):	The posterior peripheral nerves of the	20
Figure (19).	lower abdomen, pelvis, and thigh	
Figure (12):	The course of the pudendal nerve	
Figure (13): Figure (14):	The sympathetic trunk The sympathetic trunk.	
Figure (14): Figure (15):	The pelvic autonomic nervous system	
_	<u>-</u>	30
Figure (16):	Visceral pain pathways about the	20
Figure (17):	reproductive organs of the pelvis Neurological pathways of pain	
Figure (17): Figure (18):	Lidocaine molecule	
Figure (18):	Diclofenac molecule	
Figure (19): Figure (20):	Positioning of the patient, surgeon and	ഗാ
1 1gui e (20):	instruments in the operating room	62

List of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (21):	Telescope with in-out sheath with a side	
	channel 4.5 mm (Storz, Tuttlingen,	
	Germany)	62
Figure (22):	"Continuous suction irrigation pump	
	"Endomat"	63
Figure (23):	The Visual Analog or Analogue Scale	
	(VAS)	64
Figure (24):	Flow chart of recruitment of patients	
Figure (25):	Age, body mass index, duration of the	
	procedure for hysteroscopy of the two	
	studied groups.	72
Figure (26):	Indications for hysteroscopy of the two	
	studied groups.	72
Figure (27):	Pain score and adverse effects in the two	
8 , ,	studied groups.	74
Figure (28):	Pain score and adverse effects in the two	
8 (/-	studied groups.	74
Figure (29):	Adverse effects in the two studied	
8 (/-	groups.	75
Figure (30):	Change of mean arterial pressure (MAP)	
1 18011 0 (00)	in the two studied groups	77
Figure (31):	Change of heart rate in the two studied	
118010 (01)	groups	78
Figure (32):	Change of respiratory rate in the two	
1 1841 0 (02)	studied groups	78
	bradica Stoups	1 O

List of Abbreviations

Abb.	Full term
AUB	Abnormal uterine bleeding
<i>BMI</i>	Body mass index
CNS	Central nervous system
CO2	Carbon dioxide
<i>COX</i>	Cyclooxygenase
<i>DUB</i>	Dysfunctional uterine bleeding
DRG	Dorsal root ganglia
<i>ECDU</i>	Early cancer detection unit
FIGO	International Federation of Gynecology and Obstetrics
<i>ISAP</i>	The International Association for the Study of
	Pain
	Intra Cytoplasmic Sperm Injection
	Intrauterine contraceptive device
	Intra Uterine Insemination
<i>IV</i>	Intravenous
	Pot as sium-titanyl-phosphate
	Non methyle D aspartate
	Nucleus raphe magnus
	Non steroidal anti inflammatory drugs
	Outer diameter
	Peri-Aqueductal Grey matter
	Paracervical Block
	Pelvic inflammatory disease
	Recurrent pregnancy loss
	Subcautaneusly
	Saline infusion sonography
	Sexually transmitted disease
	Visual analogue scale
	Ventromedian medulla
$WDR \ cell$	Wide dynamic range cell

Introduction

ysteroscopy can be arguably regarded as the definitive procedure for evaluating the uterine cavity (Serden et al., 2000).

Diagnostic hysteroscopy is a safe and simple procedure that can almost always be carried out successfully in an office setting.

The challenge is to increase the number of operative procedures. Office hysteroscopy has already shown good results as compared with outpatient hysteroscopy, with lower health care costs, less time off work, and equal patient acceptability (Yang et al., 2002).

Although the literature suggests that office-based operative hysteroscopy without any form of analgesia or anesthesia is a well-tolerated procedure with a high success rate (Kremer et al., 2000) it continues, in general, to be considered by most gynecologists and patients to be an invasive and painful technique. Pain experienced during hysteroscopy continues to represent the most common reason for failure (Campo et al., 2005).

Pain during and after hysteroscopy, is due to several causes, cervical manipulation is usually the first cause (Ahmad et al., 2010). The cervix is grasped with an instrument (tenaculum), and may be dilated to allow the hysteroscope to

pass through (Agdi et al., 2010). Distention of the uterus during the process can also cause pain (Ahmad et al., 2010). Pain stimuli from the cervix and vagina are conducted by affrent fibers to via the pudendal and splanchnic nerves with the parasympathetic fibers to the S2 & S4 spinal ganglia (Moore et al., 2006).

Several types of drugs are used to reduce pain during and after the procedure, such as Non Steroidal Anti Inflammatory Drugs (NSAIDs) as diclofenac, opioid analgesics and local drugs (British National Formulary et al., 2008).

Local anesthesia during outpatient hysteroscopy is proposed to be an effective method for pain relief in the upper part of the uterus by blocking the nerve endings in the uterine corpus and fundus. Lidocaine spray is also used in some cases during pipelle biopsy (Hui et al., 2006).

AIM OF THE WORK

Primary Objective:

To assess the efficacy of oral Diclofinac and Lidocaine instillation in the hysteroscopic media, in reducing pain associated with outpatient hysteroscopy.

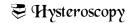
Secondary Objective:

- To document adverse effects and complications during the study.
- Rate of completion of the procedure.
- Patient satisfaction.
- Time of the procedure.

Chapter 1

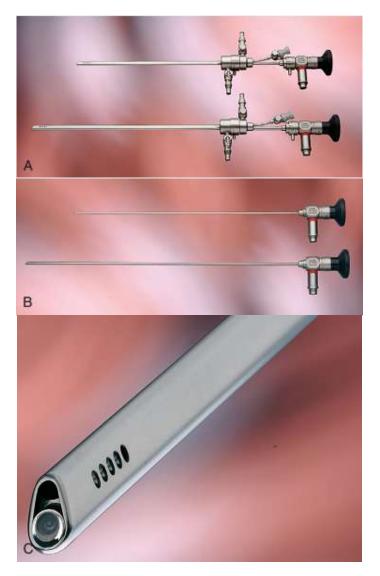
HYSTEROSCOPY

ysteroscopy is a safe and feasible procedure for diagnosing intrauterine pathology, including abnormal uterine bleeding, infertility, and recurrent pregnancy loss, and is essential for the performance of many minimally invasive intrauterine therapeutic interventions (*Hassan et al.*, 2005).


In most cases, the intrauterine pathologies can be diagnosed and treated at the same setting. For example: endometrial polyps can be diagnosed and removed. Also intrauterine adhesions can be liberated in the outpatient setting with out the need for an operating theatre (Mohammadi et al., 2015).

Types of hysteroscopy:

• Rigid hysteroscope:


Rigid hysteroscopy has a wide range of diameters that allows in-office and complex operating room procedures. Narrow options (3-5 mm in diameter), the 4 mm telescope (lens) offers the sharpest and clearest view. It accommodates surgical instruments, but is small enough to require minimal cervical dilatation (*Bettocchi et al.*, 2003).

Operative hysteroscope ranges from 8mm to 10mm in diameter and contain a working element, that requires increased cervical dilatation for insertion (**Figure 1**). It is most frequently used in the operating theatre with intravenous (IV) sedation or general anaesthesia. A distending media is introduced and removed through an outer sheath that fits over the telescope to

Review of Literature —

provide ports to accommodate large and varied instruments (Breitkopf et al., 2012).

Figure (1): Typical instruments feature two sheaths, one for irrigation and another for suction. A, 4-mm and 5-mm sheaths. B, 2.9-mm and 2.0-mm rod lens telescope. C, The oval tip allows atraumatic introduction (*Breitkopf et al., 2012*).

• Flexible hysteroscope:

Flexible (fiberoptic) hysteroscope ranges in diameter from 2.7mm to 5mm, and has a bendable tip that can be deflected in two directions ranging from 120 to 160 degrees (**Figure 2**). It also containes an operating channel for tubal catheterization or endometrial biopsy (*Breitkopf et al.*, 2012).

Generally it does not require cervical dilatation. It has a longer working length than rigid hysteroscope (*Cheong and Ledger*, 2007), that is more helpful in morbidly obese patients. The smaller outer diameter (OD) compared to the rigid hysteroscope has more advantage in nulliparous patients or those who experienced prior cervical conization (*Greenfield et al.*, 2008).

Figure (2): Karl Storz flexible hysteroscope (Bradley and Tommaso, 2009).

Parts of hysteroscope:

The telescope consists of 3 parts: objective lens, the barrel and the eyepiece. The focal length and angle of the distal tip of the instrument are important for visualization (*Critchley et al.*, 2004).

Special instruments:

- Light source
- Energy source

Light source:

A light source is required to illuminate the intrauterine cavity (ACOG, 2010). Hysteroscopic viewing distances are less than 5 cm, so the light intensity is lower than that used in laparoscopy (Breitkopf et al., 2012). Fiberoptic cables are the most common for light transmission without excessive heat generation Lighting sources include tungsten, metal halide and xenon. Xenon lighting system attached to a liquid cable is now considered the superior option (Figure 3) (Polyzos et al., 2010).

Figure (3): Xenon lighting system (Polyzos et al., 2010).

Energy sources:

Monopolar cautery:

The resectoscope is a specialized instrument that is used with a monopolar, double armed electrode and a trigger device for use in nonconductive, hypotonic media. It cuts and