COMPARATIVE STUDIES ON THE EFFECT OF DIFFERENT KINDS OF SILAGES ON HEIFER'S PERFORMANCE

By

ESAM MOHAMED MOHAMED ALI EL-KOTAMY

B. Sc. Agric. (Animal Production), Ain Shams University, 1996 M. Sc. Agric. (Animal Nutrition), Ain Shams University, 2002

A thesis submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

COMPARATIVE STUDIES ON THE EFFECT OF DIFFERENT KINDS OF SILAGES ON HEIFER'S PERFORMANCE

By

ESAM MOHAMED MOHAMED ALI EL-KOTAMY

B. Sc. Agric. (Animal Production), Ain Shams University, 1996 M. Sc. Agric. (Animal Nutrition), Ain Shams University, 2002

The thesis for Ph. D. degree has been approved by:

Dr.	Said Ahmed Mahmoud
Dr.	Hamdy Mohamed Khattab
Dr.	Salwa Mahmoud Hamdy
Dr.	Hussien Saad Soliman Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain

Date of Examination: 20 / 3 / 2010

COMPARATIVE STUDIES ON THE EFFECT OF DIFFERENT KINDS OF SILAGES ON HEIFER'S PERFORMANCE

By

ESAM MOHAMED MOHAMED ALI EL-KOTAMY

B. Sc. Agric. (Animal Production), Ain Shams University, 1996 M. Sc. Agric. (Animal Nutrition), Ain Shams University, 2002

Under the supervision of:

Dr. Hussien Saad Soliman

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Ali Abd El-Menaem El-Ashry

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Salwa Mahmoud Hamdy

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

COMPARATIVE STUDIES ON THE EFFECT OF DIFFERENT KINDS OF SILAGES ON HEIFER'S PERFORMANCE

Ву

ESAM MOHAMED MOHAMED ALI EL-KOTAMY

B. Sc. Agric. (Animal Production), Ain Shams University, 1996 M. Sc. Agric. (Animal Nutrition), Ain Shams University, 2002

Under the supervision of:

Dr. Hussien Saad Soliman

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Ali Abd El-Menaem El-Ashry

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Salwa Mahmoud Hamdy

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Abd El-Khabeer Mohamed Abd El-Khabeer

Prof. Emeritus of Animal Nutrition, Department of Animal Nutrition, Animal Production Research Institute, Agricultural Research Center

ABSTRACT

Esam Mohamed Ali El-Kotamy: Comparative Studies on the Effect of Different Kinds of Silage on Heifer's Performance. Unpublished Ph. D. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2010.

Two experiments were conducted in this study; the first one aimed to evaluate the chemical composition and some quality characteristics of maize stalks silage mixed with; (brewer and el-moffid or a grinded corn); bagasse silage with different ratios of berseem and bagasse silage with different levels of el-moffid.

The second study was conducted to investigate the effect of replacing berseem in growing buffalo heifer's diets with maize stalks silage (2.5% el-moffid) with or without 5% brewer. After 45 days from the ensiling process twenty four buffalo heifers in the 10th to 12th month's age with average body weight (BW) 143 kg; were randomly divided into three similar groups (eight per each group) according to their age and live body weights. Heifers were fed according to Animal Production Research Institute requirements for growing buffalo heifers (APRI 1997) as following: Group 1; animals (control) received 45% concentrate feed mixture (CFM), 10% rice straw and 45% berseem. Group 2; animals consumed 40% concentrate feed mixture (CFM), 10% rice straw and 50% maize stalks silage containing 2.5% el-moffid and 5% brewer. Group 3; animals received 40% CFM. 10% rice straw and 50% maize stalks silage containing 2.5% el-moffid. Water was offered to the heifers three times daily. Allowances were adjusted twice monthly, according to live body weight and average daily gain,

while one digestion trial, blood and rumen sampling were conducted before the end of this trial.

Chemical composition and quality characteristics of the silage were within the normal range of good silage. Control and G2 animals were superior than G3 animals in dry matter (DM), organic matter (OM), crude protein (CP), crude fiber (CF), ether extract (EE) and nitrogen free extract (NFE) digestibility coefficients and the values of total digestible nutrients (TDN) and digestible crude protein (DCP). Using maize stalks silages as a basal feed for buffalo heifers didn't has negative effects on average daily gain (ADG) as it was 1.157, 1.13 and 1.049 kg/ day for G1, G2 and G3 groups, respectively. ADG in G1 and G2 groups were higher (P < 0.05) than in the G3 group. Feed efficiency was better in G2 and G3 vs. control group (P < 0.05), it was 7.71, 6.95 and 7.54 (on the base of kg DM intake/kg daily gain) for G1, G2 and G3 groups, respectively. Blood serum parameters and rumen liquor values were within the normal range without any negative effects.

Generally, replacing berseem with maize stalks silages supported with some feed components such as brewer and elmoffid improved buffalo heifer's performance.

Key words: buffalo, heifers, maize stalks, silage quality, digestibility, average daily gain, rumen parameters and blood constituents.

CONTENTS

		page
	LIST OF TABLES	iv
	LIST OF FIGURES	vi
	LIST OF APPENDICES	vii
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1	Ensiling process	3
2.2.	Control of silage moisture	3
2.3.	Chopping, compaction and sealing	4
2.3.1.	The advantages of chopping	5
2.4.	Factors affecting silage quality	6
2.5.	Some of silage additives	8
2.5.1	Bacterial cultures	8
2.5.2	Mineral acids and organic acids	9
2.5.3.	Inhibitors of aerobic deterioration	10
2.5.4.	Nitrogenous compounds	11
2.5.5.	Carbohydrate-rich materials	11
2.5.6.	Minerals	12
2.6.	Silage quality evaluation	13
2.6.1.	Subjective methods of silage evaluation	15
2.6.1.1	pH value	15
2.6.1.2	Colour	16
2.6.1.3	Smell, texture and taste	17
2.6.2.	Chemical methods of silage evaluation	17
2.6.2.1	The ratio of ammonia-N to total N	18
2.6.2.2	Silage evaluation using various organic acids	18
2.6.2.3	Integrative silage evaluation from ammonia-N and	
	organic acids	19
2.7.	Feeding silage	19

2.8.	Advantages and disadvantages of silage making	21
2.9.	Silage losses	23
2.10.	Silage trouble shooting	24
2.11	Effect of feeding silage on animal's performance	25
2.12.	Digestion coefficients and nutritive values	28
2.13.	Effect of feeding silage on rumen activity	30
2.14.	Blood parameters	31
2.15.	Economical efficiency	32
3.	MATERIALS AND METHODS	33
3.1.	The first experiment (laboratory trial)	33
3.1.1.	Preparing silage samples	34
3.1.2.	Silage chemical composition and quality	35
3.2.	The second experiment (Feeding trial)	35
3.2.1.	Feeding regime and management	36
3.2.2.	Chemical composition of the tested rations.	37
3.2.3	Digestibility trial	38
3.2.4.	Rumen Liquor samples	39
3.2.5.	Blood samples	40
3.2.6	Feed efficiency	41
3.2.7	Economic efficiency	41
3.2.8	Statistical analysis	41
4.	RESULTS and DISCUSSION	43
4.1	The first experiment (laboratory trial)	43
4.1.1	Chemical composition	43
4.1.2	Quality characteristics of silage	44
4.1.2.1	Silage pH	45
4.1.2.2	Silage ammonia-N: TN concentrations	46
4.1.2.3	Silage volatile fatty acids (VFA's)	47
4.2	The second experiment (Feeding trial)	48
4.2.1.	Effect of ensiling on chemical composition and	
	quality of the second experimental silage mixtures	48

4.2.2.	Nutrients digestibility and nutritive value		
4.2.3	Effect of tested rations on rumen parameters		
4.2.3.1	pH values	53	
4.2.3.2	Ammonia nitrogen	55	
4.2.3.3	Total volatile fatty acids (TVFA's)	57	
4.2.3.4	Total nitrogen (TN)	59	
4.2.3.5	Non-protein nitrogen (NPN)	59	
4.2.3.6	True protein nitrogen (TPN)	62	
4.2.4	Blood serum parameters	64	
4.2.4.1	Serum total proteins	64	
4.2.4.2	Serum albumin	65	
4.2.4.3	Serum globulins	66	
4.2.4.4	Calculated Albumin: Globulin ratio (A/G ratio)	66	
4.2.4.5	Serum cholesterol	67	
4.2.4.6	Serum urea	67	
4.2.4.7	Serum transaminases	68	
4.2.5	Effect of treatments on heifer's productive		
	performance	70	
4.2.6.	Economical efficiency	72	
5.	SUMMARY	75	
6.	REFERENCES	79	
7.	APPENDIX TABLES	97	
8.	ARABIC SUMMARY		

LIST OF TABLES

Table		Page
1	Yield of dry matter and nutrients in legumes and	
	grasses by growth stage	7
2	Classification of silage based on pH values	16
3	Formulation of the tested rations (% DM basis)	37
4	Chemical analysis of feed ingredients and tested	
	rations	38
5	Chemical composition of the different experimental	
	maize stalks silage mixtures (% on DM basis)	43
6	Chemical composition of silage from different	
	bagasse: berseem ratios (% on DM basis)	44
7	Chemical composition of ensilage bagasse with	
	different levels of el-moffid (% on DM basis)	44
8	Silage quality characteristics	45
9	Effect of ensiling on chemical composition and some	
	quality characteristics of maize stalks silage	
	mixtures.	49
10	Effect of treatments on nutrients digestibility and	52
	nutritive value	
11	Effect of treatments on ruminal pH values	54
12	Effect of treatments on ruminal ammonia nitrogen	
	(mg/100 ml):	56
13	Effect of treatments on ruminal total volatile fatty	
	acids (meq/100 ml):	58
14	Effect of treatments on ruminal total nitrogen	
	(mg/100 ml):	60
15	Effect of treatments on ruminal non-protein nitrogen	
	(mg/100 ml):	61
16	Effect of treatments on ruminal true protein nitrogen	
	(mg/100 ml):	63

17	Effect	of	treatments	on	some	blood	serum	
	parame	eters						64
18	Effect of	of tre	eatments on	aver	age dai	ly gain ((kg/day)	
	and. fe	ed c	onversion					71
19	Effect of	of tre	atments on e	econo	mical e	fficiencv		73

LIST OF FIGURES

Fig.		Page
1	Effect of treatments on ruminal pH values.	54
2	Effect of treatments on ruminal ammonia nitrogen	56
3	Effect of treatments on ruminal TVFA's	58
4	Effect of treatments on ruminal total nitrogen	60
5	Effect of treatments on ruminal non-protein nitrogen	61
6	Effect of treatments on ruminal true-protein nitrogen	63
7	Effect of treatments on blood serum proteins	66
8	Effect of treatments on blood serum cholesterol and	
	urea	68
9	Effect of treatments on blood serum transaminases	
	conc.	69

LIST OF APPENDICES

Арр.		Page
1	Anova table of feed conversion on the base of dry matter intake	97
2	Anova table of feed conversion on the base of crude	
	protein intake.	97
3	Anova table of feed conversion on the base of total	
	digestible nutrients intake.	97
4	Anova table of dry matter digestibility coefficient.	97
5	Anova table of organic matter digestibility coefficient.	97
6	Anova table of crude protein digestibility coefficient	98
7	Anova table of crude fiber digestibility coefficient.	98
8	Anova table of ether extract digestibility coefficient	98
9	Anova table of nitrogen free extract digestibility	98
	coefficient	
10	Anova table of nutritive value on the base of total	
	digestible nutrients.	99
11	Anova table of nutritive value on the base of	
	digestible protein.	99
12	Anova table of ruminal pH values	99
13	Anova table of ruminal ammonia nitrogen	
	concentrations.	99
14	Anova table of ruminal total volatile fatty acids.	100
15	Anova table of ruminal total nitrogen	100
16	Anova table of ruminal non-protein nitrogen.	100
17	Anova table of ruminal true protein nitrogen.	100
18	Anova table of serum total protein.	100
19	Anova table of serum albumin.	101
20	Anova table of serum globulin	101
21	Anova table of serum albumin: globulin ratio.	101

viii

22	Anova table of serum cholesterol	101
23	Anova table of serum urea	102
24	Anova table of serum GOT	102
25	Anova table of serum GPT	102

ACKNOWLEDGEMENT

I thank Allah, the most gracious, most beneficent and merciful for the help and guidance to achieve goals and make them possible.

I am greatly independence and most grateful to the deceased/ Prof. Dr. **Mohamed A. El-Ashry**, Prof. of Animal Nutrition, Animal Production Department, Faculty of Agriculture., Ain Shams University and the director of the Egyptian society of nutrition and feeds. I ask and bless to be at the mercy of God and to get him to the paradise.

I wish to express my great independence to Prof. Dr. Hussien S. Soliman, Prof. of Animal Nutrition, Animal Production Department, Faculty of Agriculture., Ain Shams University and the regional director of American Feed Grains Council; for suggestion the problem, his close supervision throughout this work, I am very grateful to his close kind help, useful guidance, preparation and writing of this manuscript and valuable criticisms.

Also I wish to express my great independence to Prof. Dr. **Salwa M. Hamdy**, Prof. of Animal Nutrition, Animal Production Department, Faculty of Agriculture., Ain Shams University .for suggestion the problem, I am very grateful to her close kind help, useful guidance and valuable criticisms.

Recording my thanks to Prof. Dr. Abd El-Khabeer M. Abd El- Khabeer, Prof. Dr. Moanes M. Mohey El-Deen and Prof. Dr. Gamal F. Shaheen; Proffessors of Animal Nutrition Department, Animal Production Research Institute, Agricultural Research Center., Ministry of Agriculture, for their valuable help, valuable criticisms, and encouragement.