Study of Some Lymphocyte Subsets in Children with Newly Diagnosed Primary Immune Thrombocytopenia

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Presented by

Amna Helmy Awad

M.B.B.Ch, Ain Shams University 2008

Under Supervision of

Prof. Wafaa Ezzat Ibrahim

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Marwa Ahmed Shams

Lecturer of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Shaimaa Abdelmalik Pessar

Lecturer of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Wafaa Ezzat Ibrahim, Professor of Pediatrics Faculty of Medicine – Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Marwa Ahmed Shams**, Lecturer of Pediatrics Faculty of Medicine – Ain
Shams University for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr.** Shaimaa Abdelmalik Pessar, Lecturer of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University for her great help, outstanding support, active participation and guidance.

Last but not least my sincere thanks and appreciation to all patients participated in this study from Hematology Clinic, Children Hospital, Ain shams University.

Amna Helmy Awad

Dedication

To the memory of my father Helmy Awad, you left fingerprints in my heart, you'll always be with me.

List of Contents

Title	Page No.
List of Tables	6
List of Figures	8
List of Abbreviations	10
Introduction	1
Aim of the Work	15
Review of Literature	
■ Immune Thrombocytopenia	16
Pathogenesis	28
Management of childhood ITP	40
Subjects and Methods	57
Results	65
Summary	93
Conclusion	95
Recommendation	96
References	97
Arabic summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Bleeding score of bleeding symptoms at presentation and at each subsequent evaluation:	21
Table (2):	Frequent Examples of Differential Diagnosis of ITP and Potential Alternative Causes of Thrombocytopenia Identified By	
Table (3):	Patient History	26
Table (4):	First - line /initial treatment in children with ITP.	46
Table (5):	Treatment options in children with persistent or chronic ITP	47
Table (6):	Comparison of acute immune thrombocytopenic purpura (ITP) treatment regimen in children	48
Table (7):	Patients characteristics, History, Examination and bleeding score results of	
m 11 (0)	studied group	
Table (8):	Basic laboratory findings of studied group	
Table (9):	Follow up results of studied group	
Table (10): Table (11):	Response results of studied group	69
m 11 (10)	of studied patients as regards their response using One way ANOVA Test	70
Table (12):	Comparison of follow up results of studied patients as regards their response using	5 0
Table (13):	Oneway ANOVA Test	72
Table (14):	their response using Chisquare Test	76
	patients using Paired t Test	77

List of Tables cont...

Table No.	Title Pa	ge No.
Table (15):	CD markers value of studied group	79
	Relation between CD markers of studie group and their response to therapy usin	ed
	One way ANOVA Test	•
Table (17):	Correlation of follow up results of studio	
	patients as regards CD markers using or way ANOVA Test	ne 89

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Thrombocytopenia. Reduced levels of thrombocytes in the blood	17
Figure (2):	Role of T –Lymphocyte in ITP	37
Figure (3):	Mechanism of action of therapies for Immune	
. , ,	Thrombocytopenic Purpura	45
Figure (4):	Sex distribution among studied patients with newly diagnosed ITP (33% FEMALES, 67% MALES)	66
Figure (5):	The characteristic of patients according to history	
0 ()	and examination.	66
Figure (6):	Response of patients to steroid therapy after follow	
0 ()	up for 4 months.	69
Figure (7):	Comparison of age of studied group as regard their	
0 ()	response	71
Figure (8):	Comparison of bleeding score of studied group after	
8 ()	follow up and their response to therapy	74
Figure (9):	Comparison of platelets of studied group after	
8 ()	follow up as regards their response to therapy	74
Figure (10):	Comparison of total leucocytic count of studied	
8 ()	group at diagnosis as regards their response to	
	therapy	75
Figure (11):	Comparison of neutrophil after follow up of studied	
8 ()	group at diagnosis as regards their response to	
	therapy.	75
Figure (12):	Comparison of follow up of studied group	78
	CD value of studied group	
• • •	Relation between CD markers and response to	
0 ()	therapy among studied group.	81
Figure (15):	Correlation between platelet after follow up and	
	CD4 markers	84
Figure (16):	Correlation between total leucocutic count at start and	
	CD3 markers	84

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (17):	Correlation between lymphocytes at diagnosi CD3 markers.	
Figure (18):	Correlation between lymphocyte at diagnosis CD4	s and
Figure (19):	Correlation between lymphocytes at diagnosi CD8	is and
Figure (20):	Correlation between lymphocutes after folloand CD4/CD8 ratio	

List of Abbreviations

Abb.	Full term
APCS	Antigen presenting cells
CBC	Complete blood count
CD	Cluster of differentiation
<i>CPGs</i>	Clinical practice guidelines
CR	Complete response
CTL	Cytotoxic T lymphocytes
CTLA	Cytotoxic T cell-associated antigen
DC	Dendritic cells
<i>EAE</i>	Experimental autoimmune encephalomyelitis
EDTA	Ethylene diamine tetra-acetic acid
EGF	Epidermal growth factor
FOXp3	Forkhead-box p3
\overline{FSC}	Forward scatter
GI bleeding	Gastrointestinal bleeding
GITR	Glucocorticoid-induced tumour necrosis factor
	receptor
<i>GP</i>	Glycoprotein
HCV	HEPATITIS c virus
HIV	Human immunodeficiency virus
I Tregs	Induced Regulatory T cells
<i>ICH</i>	Intracranial hemorrhage
ICIS	International cooperative ITP study group
<i>ITP</i>	Immune thrombocytopenic purpura
<i>IgA</i>	Immunoglobulin A
IgG	$Immunoglobuln\ G$
<i>IgM</i>	Immunoglobulin M
<i>IL</i>	Interleukin
<i>INF</i>	Interferon

List of Abbreviations Cont...

Full term Abb. ISTH BAT..... International society of thrombosis / scientific and standardizationcommitteebleeding assessment tool IVIG......Intra venous immunoglobulin mAbs Monoclonal antibodies M-CSf...... Macrophage colony stimulating factor MHC Major histocomptability complex MMR.....Measles -mumps-rubella MYH9..... Myisin heavy chain 9 n Tregs......Naturally occurring Regulatory T cells NAIT...... Neonatal alloimmue thrombocytopenia NR...... No response PCPortable computer PLN......Proliferative lymphoid nodules R.....ResponseRHRhesus factor SLE Systemic lopus erythromatosis SPSS...... Statistical package for Social Science T regs Regulatory T cells TAR..... Thrombocytopenia absent radius TCR.....T cell receptor Th.....ThelperTNF...... Tumor necrosis factor TPO..... Thrombopoietin receptor

Abstract

There was significant positive correlation between total leucocytic count at diagnosis and CD3, And significant positive correlation between platelets after follow up and CD4 And high significant positive correlation between lymphocyte at diagnosis and CD3, CD4, CD8. And high negative significant correlation between lymphocytes after follow up and CD4/CD8 ratio.

There was no significant relation between CD3⁺, CD8⁺, CD4⁺ T lymphocytes and response to therapy, however it was observed that there is increase in expression of CD4+ T lymphocytes among the complete response compared with the response group but this was not significant, which may need further evaluation.

Understanding the role of T cell subsets will permit a better control of autoimmunity.

Keywords: Regulatory T cells- T cell receptor- T helper - Tumor necrosis factor- Measles -mumps-rubella

Introduction

hildhood immune thrombocytopenic purpura (ITP) is a common acquired bleeding disorder that is characterized by isolated thrombocytopenia (peripheral blood platelet count <100×103/μL) in the absence of other causes of thrombocytopenia. It is an autoimmune-mediated condition that results from antibody-mediated destruction of platelets and impaired megakaryocyte platelet production (*Neunert*, 2013). Newly diagnosed ITP may follow within a few weeks after an antigenic challenge such as infection or vaccination (*Stasi and Newland*, 2011).

The trigger also may be a loss of tolerance due to molecular mimicry with cross-reaction of antibodies arising from infectious agents or drugs, genetic factors, and/or platelet Toll receptors. This loss of tolerance activates autoreactive effector B and T lymphocytes, which in turn initiates platelet destruction, mediated by cytotoxic T lymphocytes and the release of pro-inflammatory cytokines (IL-2/IL-17) by T helper (Th) cells (Th1/Th17). Th2 (anti-inflammatory) and regulatory B (Breg) and Treg cells are also inhibited (with decrease in IL-10/TGF- β), which leads to the disease becoming chronic. Some isotypes of autoantibodies may increase the bleeding risk *(Perera et al., 2016)*.

T cells have an important role in modulating the immune system's direction towards disease. Dysregulation of T cell

activity and cytokine abnormalities have been found to be a contributing factor to many autoimmune diseases, including ITP (Hu et al., 2012).

The Th1/Th2 cytokine axis is critical for autoimmune reactivity. For example, the Th1/Th2 imbalance leading to autoreactive B cell differentiation seen in ITP was shown to be restored to a protective Th2 population after treatment with glucocorticoid (Guo et al., 2012).

Management of newly diagnosed ITP consists of careful observation, regardless of platelet count (Schultz et al., 2014), Severe bleeding, which occurs in only 3%–5% of children, requires treatment with corticosteroids, intravenous immunoglobulin (IVIG), or anti-Rhesus-D immunoglobulin (Neunert et al., 2011).

Most children with ITP have an acute presentation of purpura and bruising, and 80%–90% of the cases recover spontaneously or with therapy. However, in 10–20% of newly diagnosed children, ITP has a chronic course that persists beyond 12 months (Schultz et al., 2014). Because of the high impact of ITP on a child's everyday life and activities, identification of prognostic factors would be beneficial for reducing stress and improving quality of life for both these children and their parents (Heitink et al., 2014).

AIM OF THE WORK

o evaluate levels of CD3+ (T lymphocytes), CD4+ helper T lymphocytes and CD8+ cytotoxic T lymphocytes in patients with newly diagnosed immune thrombocytopenia and its impact on disease outcome.