ROLE OF CERTAIN BIO-PESTICIDES IN PEST MANAGEMENT OF SOME ORGANIC VEGETABLES

By

TAMER ABDALLA NABAWY EL-MASHTOLY

B.Sc. Agric. Sc. (Pesticides), Ain Shams University, 1999M. Sc. Agric. Sc. (Pesticides), Ain Shams University, 2005

A thesis submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Pesticides)

Department of Plant Protection

Faculty of Agriculture

Ain Shams University

2010

Approval Sheet

ROLE OF CERTAIN BIO-PESTICIDES IN PEST MANAGEMENT OF SOME ORGANIC VEGETABLES

By

TAMER ABDALLA NABAWY EL-MASHTOLY

B.Sc. Agric. Sc. (Pesticides), Ain Shams University, 1999M. Sc. Agric. Sc. (Pesticides), Ain Shams University, 2005

This thesis for Ph. D. degree has been approved by:

Dr. Mohamed Abdel-Hady Kandeel
Prof. Emeritus of Pesticides, Faculty of Agriculture, Cairo Universit
Dr. Samir Abdel-Aziz Ibrahim
Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Dr. Mohamed Ibrahim Hussein
Prof. of Pesticides, Faculty of Agriculture, Ain Shams University
Dr. Mohamed El-Said Saleh El-Zemaity
Prof. of Pesticides, Faculty of Agriculture, Ain Shams University

Date of Examination: 27/4/2010

ROLE OF CERTAIN BIO-PESTICIDES IN PEST MANAGEMENT OF SOME ORGANIC VEGETABLES

By

TAMER ABDALLA NABAWY EL-MASHTOLY

B.Sc. Agric. Sc. (Pesticides), Ain Shams University, 1999M. Sc. Agric. Sc. (Pesticides), Ain Shams University, 2005

Under the supervision of:

Dr. Mohamed El-Said Saleh El-Zemaity

Prof. of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Ibrahim Hussein

Prof. of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Steven R. Alm

Prof. of Entomology, Department of Plant Science and Entomology, College of Environment and Life Science, University of Rhode Island, USA

ABSTRACT

Tamer Abdalla El-Mashtoly: Role of Certain Biopesticides in Pest Management of Some Organic Vegetables. Unpublished Ph. D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2010.

The present work was conducted to evaluate the efficiency of different biocontrol agents, prepared from Bacillus thuringiensis against certain insects, (i.e. B. thuringiensis serovar japonensis strain Buibui toxin to Oriental beetle, Anomala orientalis "Waterhouse" and Northern masked chafer, Cyclocephala borealis Arrow. Bacillus thuringiensis subsp Kurstaki and aizawai formulated as Dipel® DF and XenTari ®DF respectively, to black cutworm, Agrotis ipsilon). Also, to investigate the enhanced toxicity of Btj, Btk and Bta with the isolated associated bacteria. Data showed significant differences in LC₅₀'s for both pests, Oriental beetles and Northern masked chafers in autoclaved and non-autoclaved soil. Toxicity of Btj was varied tremendously according to the concentration used, soil type, organic matter %, and soil sterility. There were significant differences between Dipel and XenTari in controlling the 2nd and 4th instar of Agrotis ipsilon. Two of the isolated and associated hemolymph bacteria (NFD2 and FNFD1) showed significant synergistic effect to the toxicity of all the tested bio-agents versus their recommended pest. Five bacterial strains were isolated from hemolymph and identified using PCR technique with fifteen pairs of universal primers, and then 2% agarose gel electrophoresis was used to check the yielded DNA band. PCR products were purified using spincolumn technology recommended for efficient recovery of DNA. The sequencing of both forward and reverse primer in all used primer sets were highly aligned (99-100%). This identity showed that PCR product was completely sequenced. The identification data emphasized that the enhanced bacterial strains were Bacillus sp and Pseudomonas sp for NFD2 and FNFD1, respectively.

Key words: Enhancement, Biopesticides, Bacillus thuringiensis Associated bacteria, PCR, and DNA Sequencing.

ACKNOWLEDGEMENT

Firstly, all thanks are due to ALLAH for giving me the knowledge and his great support to pass the challenges hard times toward the completion of my Ph.D. I would express my deepest thanks and sincere gratitude to **Prof. Dr. Mohamed El-Said El-Zemaity**, Prof. of Pesticides Chemistry and Toxicology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University, for his supervision, his fruitful suggestions and advice throughout this study, and for revising the manuscript, **Professor Steven R. Alm,** Prof. of Entomology, Dept. of Plant Science and Entomology, College of Environmental and life science, University of Rhode Island, USA, for advising me, offering all the facilities needed in his labs, and helping me with informative suggestions and constructive criticism. **Prof. Dr. Mohamed Ibrahim Hussein,** Prof. of Pesticides Chemistry and Toxicology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University, for his supervision, and for revising the manuscript.

I wish to express my deep appreciation and gratitude to **Dr. Assem Abolmaaty**, who supported me, scientifically and emotionally, and taught me all the required microbiology knowledge, PCR technique, and the use of universal primers for the identification of unknown bacteria,. My deepest gratitude is extended to **Dr. Wendy Coy** for teaching me the purification techniques of DNA and for DNA sequencing, **Professor Joey Amador** Professor of soil microbiology, University of Rhode Island, for his great suggestions in the isolation of bacteria from soil samples, **Professor Thomas Mather** for allowing me to conduct the molecular biology work at use his laboratories, **Dr. Aftab Ahmed** for offering facilities in ENBRI Core Lab.,

Also, would like to express my thanks and appreciation to **Mr. Paul Johnson** for his kind help in DNA sequencing. **Edwin Requientina, Olivia Beans** and **Nicole Thompson** for their kind help and technician support.

Finally, no words can express my gratitude to my father's soul, my mother, my sincere wife for their continuous help, care, prayers, and great support.

CONTENTS

- LIST OF TABLES
- LIST OF FIGURES
I- INTRODUCTION
II- REVIEW OF LITERATURE
1- Bioassays of Bacillus thuringiensis based biopesticides to Coleoptera
insect pests.
2- Bioassays of Bacillus thuringiensis based biopesticides to
lepidopteran insect pests
3- Contribution of the associated bacteria to enhance <i>Bt</i> toxicity
4- Protein digestibility and protease activity in the insect's midgut
5- Polymerase chain reaction (PCR) and universal primers used in
identifying bacteria
III- MATERIAL AND METHODS
1- Biopesticides Used
1-1- Toxin of Bacillus thuringiensis serovar japonensis (Btj)
1-2- Formulations of Dipel® DF and XenTari ®DF
2-Tested Insects
3- Bioassay tests
3-1- Soil Bioassays
3-1-1- LC ₅₀ 's of Bacillus thuringiensis japonensis toxin to Anomala
orientalis in autoclaved and non-autoclaved soils
3-1-3-Enhanced the bioactivity of <i>Btj</i> toxin to oriental beetle and
northern masked chafer larvae with isolated bacteria strains
3-1-3-1- Enhanced toxicity of <i>Btj</i> toxin to oriental beetle larvae with
NFD2 bacteria strain
3-1-3-2- Enhanced toxicity of Btj toxin to northern masked chafer larvae
with NFD2 bacteria strain
3-2- Per Os Bioassays
3-2-1- Per Os Bioassay for Oriental beetle

3-2-2- Per Os Bioassay for Northern masked chafer
3-3- Diet Bioassay for <i>Agrotis ipsilon</i> larvae (Lepidoptera:
Noctuidae)
3-3-1- LC ₅₀ 's of <i>Bacillus thuringiensis</i> subspecies <i>Kurstaki</i> to 2 nd and
4 th instar of black cutworm, <i>Agrotis</i>
ipsilon
3-3-2- LC ₅₀ 's of Bacillus thuringiensis subspecies Aizawy to 2 nd and 4 th
instar of black cutworm, Agrotis ipsilon
3-3-3- Enhanced the bioactivity of the tested biopesticides with other
isolations of bacteria.
3-3-3-1- Enhanced Toxicity of <i>Btk</i> and <i>Bta</i> to 2 nd instar of black
cutworm with Bacillus sp and Pseudomonas sp
3-3-3-2- Enhanced Toxicity of Btk and Bta to 4 th instar of black
cutworm with Bacillus sp and Pseudomonas sp
4- Statistical Analysis for determination of LC and LD values
5- Associated bacteria in the hemolymph of treated grubs with <i>Btj</i>
5-1- Isolation of the hemolymph associated bacteria
5-2- Culture of bacteria
5-3- Identification of bacteria.
5-3-1- Extraction the bacterial DNA
5-3-2- Ampilification of 16S rDNA
5-3-3- Purification of PCR product
5-3-3-1- Binding the PCR product into spin Column
5-3-3-2-Washing the adsorbent DNA through the spin column
5-3-3- Elution of DNA in low salt solution
5-3-3-4- DNA yield and concentration.
5-3-4- Determination of the DNA concentration
5-3-5- Sequencing of the purified bacterial DNA
IV- RESULTS AND DISCUSSION
1-Toxicity of Bacillus thuringiensis japonensis toxin to Scarab grubs.
1-1- Efficiency of Btj to A. orientalis and C. borealis in autoclaved and
non-autoclaved soils

1-2- Enhanced Toxicity of <i>Btj</i> toxin to Oriental Beetle and Northern
Masked Chafer Larvae with Bacillus sp. (NFD2)
1-2-1- Enhanced Toxicity of Btj toxin to Oriental Beetle Larvae with
Bacillus sp. (NFD2).
1-2-2- Enhanced Toxicity of Btj toxin to Northern masked chafer
Larvae with Bacillus sp. (NFD2)
2- Toxicity of two formulated Bacillus thuringiensis Kurstaki and
aizawai to Agrotis ipsilon
2-1- Efficacy of Dipel DF and XenTari DF against 2 nd instar of Agrotis
ipsilon
2-2- Efficacy of Dipel DF and XenTari DF against 4th instar of Agrotis
ipsilon
3- Enhanced toxicity of two formulated Bacillus thuringiensis Kurstaki
and aizawai to Agrotis ipsilon
3-1- Enhanced toxicity of Dipel and XenTari with Two enteric bacteria
strains to 2 nd instar of Agrotis ipsilon
3-2- Enhanced toxicity of Dipel and XenTari with Two enteric bacteria
strains to 4 th instar of Agrotis ipsilon.
4. Identification of bacterial isolates using 16SrDNA universal
primers
4.1. Amplification of 16SrDNA universal genome
4.2. Sequencing of amplified 16SrDNA universal genome
V- SUMMARY
VI-REFERENCES
Appendixes
Appendix (1)
Appendix (2)
Appendix (3)
Appendix (4)
Appendix (5)
ARABIC SUMMARY

LIST of TABLES

$N_{\rm o}$		Page
1	Analysis of soils from Kingston, RI and Groton, CT	41
2	Oligonucleotide primer sets used in this study	47
3	LC50's of Bacillus thuringiensis japonensis toxin in	
	autoclaved and non-autoclaved soils to Anomala orientalis	
	at 14 days after treatment	52
4	LC50's of Bacillus thuringiensis japonensis toxin in	
	autoclaved and non-autoclaved soils to Cyclocephala	
	borealis at 14 days after treatment	53
5	LD ₅₀ 's of <i>Bacillus thuringiensis japonensis</i> toxin in per os	
	bioassays for Anomala orientalis and Cyclocephala	
	borealis	54
6	LC50's of Bacillus thuringiensis japonensis toxin to	
	Anomala orientalis in autoclaved and non-autoclaved	
	Groton soils at 14 days after treatments	59
7	LC ₅₀ 's of Bacillus thuringiensis japonensis toxin to	
	Cyclocephala borealis in autoclaved and non-autoclaved	
	Groton soils at 14 days after treatments	62
8	LC ₅₀ 's of two formulated Bacillus thuringiensis based	
	biopesticides, Dipel DF and XenTari DF, to 2nd instar of	
	Agrotis ipsilon at 7 and 10 days after treatment	
	(DAT)	66
9	LC ₅₀ 's of two formulated Bacillus thuringiensis based	
	biopesticides, Dipel DF and XenTari DF, to 4th instar of	
	Agrotis ipsilon at 7 and 10 days after treatment (DAT)	68
10	LC ₅₀ 's of two formulated Bacillus thuringiensis based	
	biopesticides, Dipel DF and XenTari DF, enhanced with	
	two strains of enteric bacteria to 2 nd instars of Agrotis	
	ipsilon at 7 days after treatment	71

11	LC ₅₀ 's of two formulated <i>Bacillus thuringiensis</i> based	
	biopesticides, Dipel DF and XenTari DF, enhanced with	
	two strains of enteric bacteria to 4th instars of Agrotis	
	ipsilon at 7 days after treatment	77

LIST of FIGURES

N_o		Page
1	Toxicity regression lines of Btj to Anomala orientalis in	
	three different types of soil	52
2	Toxicity regression lines of Btj to Anomala orientalis and	
	Cyclocephala borealis per os	53
3	Toxicity regression lines of Btj to Anomala orientalis and	
	Cyclocephala borealis per os	55
4	Toxicity regression lines of Btj, dissolving in double	
	distilled water, to Anomala orientalis in autoclaved and	
	non autoclaved Groton soil	60
5	Toxicity regression lines of Btj, dissolving in phosphate	
	buffer saline, to Anomala orientalis in autoclaved and	
	non autoclaved Groton soil	60
6	Toxicity regression lines of Btj along with NFD2	
	Bacterium strain to Anomala orientalis in autoclaved and	
	non autoclaved Groton soil	61
7	Toxicity regression lines of Btj along with NFD2	
	Bacterium strain to Cyclocephala borealis in autoclaved	
	and non autoclaved Groton soil	63
8	Toxicity regression lines of Btj, dissolving in double	
	distilled water, to Cyclocephala borealis in autoclaved	
	and non autoclaved Groton soil	63
9	Toxicity regression lines of Btj, dissolving in phosphate	
	buffer saline, to Cyclocephala borealis in autoclaved and	
	non autoclaved Groton soil	64
10	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, to 2 nd instar of Agrotis ipsilon at 7 days after	
	treatment	67

11	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, to 2 nd instar of Agrotis ipsilon at 10 days after	
	treatment	67
12	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, to 4th instar of Agrotis ipsilon at 7 days after	
	treatment	68
13	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, to 4 th instar of Agrotis ipsilon at 10 days after	
	treatment	69
14	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, dissolving in PBS to 2 nd instar of Agrotis	
	ipsilon	72
15	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, along with NFD2 strain to 2 nd instar of Agrotis	
	ipsilon	72
16	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, along with FNFD1 strain to 2 nd instar of Agrotis	
	ipsilon	73
17	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, along with a mixture of both NFD2 & FNFD1 strains	
	to 2 nd instar of Agrotis ipsilon	73
18	Toxicity regression lines of two formulated Bacillus	
	thuringiensis based biopesticides, Dipel DF and XenTari	
	DF, dissolving in PBS to 4 th instar of Agrotis ipsilon	78

.9	Toxicity regression lines of two formulated <i>Bacillus</i>
	thuringiensis based biopesticides, Dipel DF and XenTari
	DF, along with NFD2 strain to 4th instar of Agrotis
	ipsilon
0	Toxicity regression lines of two formulated Bacillus
	thuringiensis based biopesticides, Dipel DF and XenTari
	DF, along with FNFD1 strain to 4 th instar of Agrotis
	ipsilon
1	Toxicity regression lines of two formulated Bacillus
	thuringiensis based biopesticides, Dipel DF and XenTari
	DF, along with a mixture of both NFD2 & FNFD1 strains
	to 4 th instar of Agrotis ipsilon
2	Gel electrophoresis of PCR amplification products with
	unknown strain FD2
3	Gel electrophoresis of PCR amplification products with
	unknown strain FD3
1	Gel electrophoresis of PCR amplification products with
	unknown strain FNFD1
5	Gel electrophoresis of PCR amplification products with
	unknown strain NFD1
ó	Gel electrophoresis of PCR amplification products with
	unknown strain NFD2
7	Alignment of Forward and Reverse Sequences in FD2
	strain
,	Alignment of Forward and Reverse Sequences in FD3
	strain
29	Alignment of Forward and Reverse Sequences in FNFD1
	strain
)	Alignment of Forward and Reverse Sequences in NFD1
	strain
	Alignment of Forward and Reverse Sequences in NFD2
	strain

I- INTRODUCTION

Over 90 species of naturally occurring, insect-specific (entomopathogenic) bacteria have been isolated from insects, plants, and the soil, but only a few have been studied intensively. Much attention has been given to *Bacillus thuringiensis*, a species that has been developed as a microbial insecticide (Weeden *et al.*, 2007).

Bacillus thuringiensis (Bt) is a common gram positive, sporeforming, soil bacterium. When resources are limited, vegetative Bt cells undergo sporulation, synthesizing a protein crystal during spore formation. Proteins in these crystals are called Cry (Crystal) endotoxins and have been known for decades to display insecticidal activity against specific insect groups (Weeden et al., 2007). This insecticidal activity is primarily due to the production of a toxic protein crystal (the delta endotoxin) which accounts for 20-30% of the dry weight of sporulating cultures (**Fast**, 1981). Genes responsible for expression of the delta-endotoxin have been reported to occur on large plasmids in many strains of B. thuringiensis (Schnepf & Whitely, 1981; Klier et al., 1982 and Gonzalez et al., 1982). The crystal is a protoxin composed of repeating polypeptide subunits, although the number and size of the polypeptides varies in different isolates (Calabresde & Nickerson, 1980 and Fast 1981). Cry1A toxins active against lepidopteran pests are synthesized as 130 kDa protoxins. In order to exert their toxic activity, crystal inclusions are ingested by larvae, dissolved and activated in the midgut lumen by proteases to yield a 60 kDa monomer. The activated toxin binds with high affinity (Kd,1 nM) to a cadherin receptor that is located in the apical membrane of midgut epithelial cells (Vadlamudi, et al., 1995). Binding of Cry1A toxin to cadherin induces oligomerization of the toxin, which is essential for membrane insertion. Even though insecticidal formulations based on Bt toxins have been used for many years, it was the development and commercialization of insectresistant transgenic Bt crops expressing Cry toxins that revolutionized the history of agriculture. Benefits of this technology include high specificity and potency, reduction in chemical pesticide applications, and increased crop yield. Even though Cry toxins have been extensively used 2

commercially, the specificity of their mode of action are still controversial. This multi-step toxicity process includes ingestion of the Cry protein by a susceptible insect, solubilization, and processing from a protoxin to an activated toxin core in the insect digestive fluid. The toxin core travels across the peritrophic matrix and binds to specific receptors called cadherins on the brush border membrane of the gut cells. Toxin binding to cadherin proteins results in activation of an oncotic cell death pathway and/or formation of toxin oligomers that bind to GPI-anchored proteins and concentrate on regions of the cell membrane called lipid rafts. Accumulation of toxin oligomers results in toxin insertion in the membrane, pore formation, osmotic cell shock, and ultimately insect death. Whether oncosis, pore formation and/or both mechanisms are ultimately responsible for enterocyte death is still controversial (Jurat-Fuentes, 2008).

An isolate of *Bacillus thuringiensis*, designated serovar *japonensis* strain Buibui, obtained from a soil sample collected in the vicinity of Tokushima, Japan exhibits strong larvicidal activity against several scarabaeid pest species (**Ohba** *et al.*, **1992**). The parasporal inclusions are spherical to ovoid in shape, showing a morphological similarity to those produced by the type strain of *B. thuringiensis* serovar *japonensis* (**Ohba** and **Aizawa**, **1986**). The parasporal inclusion of *B. thuringiensis japonensis* is highly toxic to *Anomala cuprea* Hope, *A. rufocuprea* Motschulshy and *Popillia japonica* Newman in qualitative oral toxicity tests (**Ohba** *et al.*, **1992**). When fed on bacterial amended humus, scarabaeid larvae were often killed within 1-2 days post feeding and 100% mortality occurred within 5-7 days (**Ohba** *et al.*, **1992**). No toxicity was shown by this isolate against larvae of Lepidoptera, Diptera, Orthoptera, and adults of chrysomelids (**Ohba** *et al.*, **1992**).

The toxicity of *B. thuringiensis japonensis* varies significantly among scarabaeid species and life stages. **Suzuki** *et al.*, (1992) showed that 25 µg of 130 kDa protein per g compost was highly toxic (63 to 100% mortality in 21 days) against *Anomala albopilosa* Hope (1st instar), *A. rufocuprea* (3rd instar), *A. daimiana* Harold (1st instar), *A. shonfledti* Ohaus (3rd instar, *Mimela splendens* (Gyllenhal) (1st instar), and *A. orientalis* (2nd