Role of 2D Speckle Tracking Echocardiography in Detecting Subclinical Abnormalities of Left Ventricular Systolic Function in Chronic Renal Failure Patients with Normal Ejection Fraction

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

$\Im \chi$ Mohamed Gamal Mohamed MBBCH

Supervised by

Prof. Ramy Raymond Elias

Assistant Professor of Cardiology Faculty of Medicine - Ain-Shams University

Dr. Viola William Keddeas

Lecturer of Cardiology
Faculty of Medicine - Ain-Shams University

Dr. Adham Ahmed Abdel Tawab

Lecturer of Cardiology Faculty of Medicine - Ain-Shams University

Faculty of Medicine - Ain-Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

It gives me a great pleasure to express my deepest gratitude and cordial feeling to **Doctor Ramy Raymond Elias** Assistant Professor of Cardiology – Ain Shams University I am greatly indebted to his for suggesting this work and for his valuable guidance, continuous encouragement and discussion.

I would like to express my great thanks to **Doctor Viola** William Keddeas Lecturer of Cardiology – Ain Shams University. I am thankful for his close supervision, continuous help and guidance in the course of this study.

It's a pleasure to express my deepest appreciation, gratitude and sincere thanks to my supervisor **Doctor Adham**Ahmed Abdel Tawab Lecturer of Cardiology— Ain Shams University, for his constructive suggestions, excellent guidance and eminent supervision which aided me over difficulties I met throughout this work.

I would like to thank my patients, My colleagues and any one helped me to finish this work.

Mohamed Gamal Mohamed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	2
Aim of the Work	3
Review of Literature	
 Cardiovascular Diseases in Hemodialysis Par 	tients4
Speckle-Tracking Echocardiography	21
Patients and Methods	34
Results	47
Discussion	58
Study Limitations6	
Conclusion	65
Recommendations	66
Summary	67
References	69
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Showing grading of LV diastolic funct	ion	41
Table (2):	Demographic characteristics of the and Control Groups.	•	48
Table (3):	Prevalence of different risk factors study and control groups:		49
Table (4):	Clinical characteristic of the study		50
Table (5):	The M-Mode and Two dimense Echocardiographic Findings.		51
Table (6):	Echocardiographic assessment of diffunction.		53
Table (7):	Deformation parameters as assess speckle tracking echocardiography	•	54
Table (8):	Relation of the peak GLS torsi different study parameters.		56
Table (9):	Relation of the peak LV torsion to distudy parameters.		57

List of Figures

Fig. No.	Title Page	No.
Figure (1):	CVD mortality in the general population compared with patients with ESRD treated by dialysis	
Figure (2):	Causes of death in prevalent HD patients	
Figure (3):	Factors contributing to left ventricular hypertrophy in ESRD	
Figure (4):	Coronary calcification in dialysis patients compared with nonrenal disease patients with or without CAD	
Figure (5):	Speckle-tracking echocardiographic analysis of myocardial deformation showing measurements of longitudinal strain	
Figure (6):	Graphic depiction of left ventricular rotational dynamics showing rotation of the cardiac base and apex	
Figure (7):	Comparative representation of left ventricular twisting measurements in a diabetic patient with a preserved left ventricular ejection fraction and an age-	
Figure (8):	matched healthy individual	
Figure (9):	recipient Left atrial function analysis by speckle-	
	tracking echocardiography	32

List of Figures (Cont...)

Fig. No.	Title Pag	ge No.
Figure (10):	LV assessment: M-mode assessment	of
	LV dimensions in parasternal long ax	is
	view LV volumes and EF measuremen	$^{ m t}$
	in apical four chamber view	38
Figure (11):	Illustration of dilated LA Diameter	er
	measurement by M-Mode at PLAX, L	A
	volume measurement in apical fou	ır
	chamber view.	39
Figure (12):	Assessment of diastolic function using	g
	PWD across the mitral valve and TD	Ι
	along the mitral valve lateral annulus	40
Figure (13):	Illustrations of the Steps involved i	n
	speckle tracking echocardiography	43
Figure (14):	Illustration of measurement of L	V
	torsion from para-sternal short ax	is
	view	45

List of Abbreviations

Abb.	Full term
BSA	Body surface aewa
	Cardiac troponin I
	$Cardiac\ troponin\ T$
	$ Cardio\ vascular$
	Cerebrovascular accident
	Cardiovascular disease
	Ejection fraction
	End stage renal disease
	Glomerular filtration rate
	Global longitudinal strain
HD	Hemodialysis
HGB	Hemoglobin
HsCRP	High sensitivity C-reactive protein
<i>HsTnI</i>	High seneitivity troponin I
<i>IVS</i>	Inter ventricular septum
KDOQI	Kidney Disease Outcomes Quality Initiative
<i>LA</i>	Left atrium
<i>LAVI</i>	Left atrium volume index
LV	Left ventricle
LVEDD	Left ventricular end diastolic diameter
LVEDV	Left ventricular end diastolic volume
LVESD	Left ventricular end systolic diameter
LVESV	Left ventricular end systolic volume
LVH	Left ventricular hypertrophy
LVMI	Left ventricular Mass index
<i>NO</i>	Nitric oxide
NT-proBNP	N-terminal prohormone Brain naturitic peptide
PE	Pulmonary embolism
<i>PTH</i>	Parathyroid hormone

List of Abbreviations (cont...)

INTRODUCTION

Vhronic kidney disease (CKD) is a worldwide public health problem and cardiovascular mortality is estimated to be at least 10- to 100-fold higher in patients with end stage renal disease (ESRD) than in the age matched general population (Chan et al., 2011).

Uremia is associated with an increased risk of cardiovascular diseases, including coronary artery disease, myocardial infarction, and heart failure. Mortality is increased by 10- to 20-fold in dialysis patients compared with healthy individuals (Bradbury et al., 2007).

The worldwide rise in the number of patients with chronic kidney disease (CKD) and consequent end-stage renal disease (ESRD) necessitating renal replacement therapy (RRT) and attendant cardiovascular disease (CVD) is threatening to reach epidemic proportions over the next decade, and only a small number of countries have robust economies able to meet the challenges posed (Gouda et al., 2011).

In Egypt, one of the developing countries, poverty has emerged as one of the most challenging socio-economic problems, with 22.9% of the total populations within the national poverty line. A change in global approach to CKD from treatment of ESRD to much more aggressive primary and secondary prevention is therefore imperative (Gouda et al., 2011).

Left ventricular (LV) dysfunction is one of the major determinants for prognosis in patients with chronic kidney disease (CKD) (Yan et al., 2011).

Most studies have used the conventional echocardiographic parameters of cardiac function, such as ejection fraction and fraction shortening, which are frequently normal in uremic patients (Yan et al., 2011).

Recent echocardiographic studies have shown that strain analysis of the myocardium is a very sensitive method for predicting clinical outcomes in various heart diseases (D'Hooge et al., 2000).

In practice, speckle tracking may be readily applied to echocardiographic images to provide additional information on myocardial strain patterns in patients with renal disease, and one report showed it to be more accurate than TDI, partly because TDI is beam-angle-sensitive. Speckle tracking could have a role in assessing patients with symptoms of heart failure and preserved EF (Jia et al., 2010).

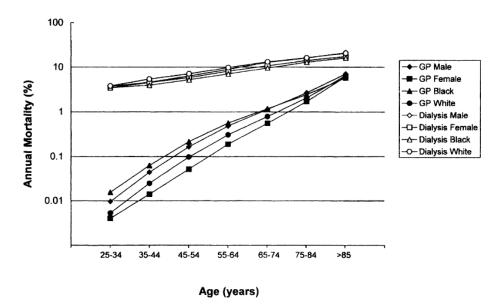
Because myocardial strain abnormalities are associated with a worse prognosis. Identification of such abnormalities might encourage clinicians to modify treatment strategies so as to optimize blood pressure control and avoid high ultrafiltration volumes during dialysis sessions. Future interventional studies are required to test whether these measures will translate into improved outcomes (Sharma et al., 2006).

AIM OF THE WORK

The aim of this study is to identify early markers of cardiovascular disease in end stage renal disease patients using speckle tracking echocardiography.

Chapter 1

CARDIOVASCULAR DISEASES IN HEMODIALYSIS PATIENTS


The number of patients with end stage renal disease (ESRD) is rapidly growing. Regular hemodialysis (HD) as a renal replacement therapy for ESRD patients is associated with extremely high mortality rates up to seven times greater than in the general population (*Colado et al.*, 2010).

Prevalence of cardiovascular diseases in hemodialysis patients:

Cardiovascular diseases (CVDs) present in all stages of chronic kidney disease (CKD) and reach around 30 to 44% of those beginning HD (*Allan et al.*, 2013).

CVDs are the major causes of death in HD patients accounting for 40% to 45% of all deaths. The total mortality from CV causes in HD patients is divided as follows: 4.7% acute myocardial infarction (AMI), 4.8% congestive heart failure (CHF), 26.9% arrhythmia and sudden cardiac death (SCD), 3.1% cerebrovascular accidents (CVA), 0.3% pulmonary embolism (PE), 1.9% other cardiac causes and 0.9% other vascular causes (*Allan et al., 2013*).

Figure (1) shows CVD mortality in general population compared with ESRD on regular hemodialysis patients.

Figure (1): CVD mortality (death from arrhythmias, cardiomyopathy, cardiac arrest, myocardial infarction, atherosclerotic heart disease, and pulmonary edema) in the general population compared with patients with ESRD treated by dialysis (*Sarnak et al.*, 2013).

The prevalence of CVD is increased in all patients with CKD, not only in end-stage renal disease (ESRD). Of notice, the prevalence of left ventricular hypertrophy (LVH) increases as glomerular filtration declines. Also, as many as 30% of patients reaching ESRD already have clinical evidence of ischemic heart disease or heart failure. Furthermore, it is important to note that patients with a reduced glomerular filtration rate (GFR) are more likely to die of CVD than they are to develop ESRD (Wright et al., 2002).

Figure (2) shows the main causes of death in HD patients.

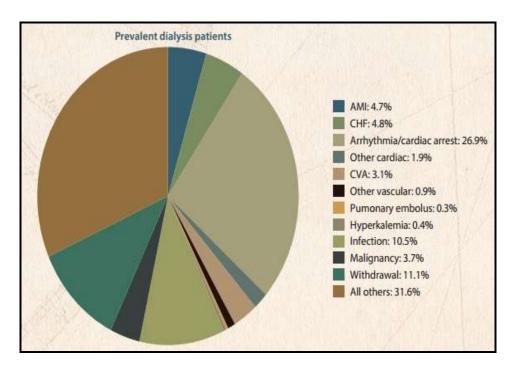


Figure (2): Causes of death in prevalent HD patients (Allan et al., 2013).

Risk factors for CVDs in HD patients:

Risk factors for CVDs in HD patients include both traditional risk factors "e.g. age, sex, D.M., HTN, smoking, obesity, positive family history, sedentary lifestyle, and the unique exclusive non-traditional risk factors including inflammation and C-reactive protein (CRP), oxidative stress, endothelial dysfunction, lack of nitric oxide (NO) availability, hyper-homocysteinemia, dysregulation of calcium (Ca) and phosphate (P) metabolism and anemia (Gansevoort et al., 2013).