

# Ain Shams University Faculty of Engineering Electronics and Communications Department

# Ultra-low power transceiver for no-battery applications

A Thesis submitted in partial fulfillment for the requirements of a Master of Science degree in Electrical Engineering Electronics and Communications

Engineering Department

#### Mo'men Mansour Mohammed Abu Sareya

B.Sc. of Electrical Engineering (Electronics and Communications Department) Ain Shams University, 2010

Supervised by Prof. Ahmed Ahmed Eladawy Emira Prof. Mohamed Amin Dessouky

Cairo 2016



Ain Shams University Faculty of Engineering Electronics and Communications Department

## Ultra low power transceiver for no-battery applications

Mo'men Mansour Mohammed Abu Sareya

B.Sc. of Electrical Engineering (Electronics and Communications Department) Ain Shams University, 2010

#### Examiners' Committee

| Title, Name and Affiliation                      | Signature |
|--------------------------------------------------|-----------|
| Prof. Abdelhalim Mahmoud Shousha                 |           |
| Cairo University,                                |           |
| Faculty of Engineering,                          |           |
| Electronics and Communications Engineering Dept. |           |
|                                                  |           |
| Prof. Hani Fikry Ragaai                          |           |
| Ainshams University,                             |           |
| Faculty of Engineering,                          |           |
| Electronics and Communications Engineering Dept. |           |
|                                                  |           |
| Prof. Mohamed Amin Dessouky                      |           |
| Ainshams University,                             |           |
| Faculty of Engineering,                          |           |
| Electronics and Communications Engineering Dept. |           |

Date 31/12/2016

#### Statement

This Thesis submitted in partial fulfillment for the requirements of a Master of Science degree in Electrical Engineering Electronics and Communications Engineering Department.

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Mo'men Mansour Mohammed Abu Sareya Signature : .....

**Date:** 31/12/2016

#### Researcher Data

Name: Mo'men Mansour Mohammed Abu Sareya

**Date of Birth:** 05/10/1988

Place of Birth: Iraq

Last academic degree: B.Sc. in Electrical Engineering

Field of specialization: Electronics and Communications

University issued the degree: Ain Shams University

Date of issued degree: 2010

Current job: Analog IC Design Engineer

## Dedication and Acknowledgments

All praise is due to Allah, most merciful, the lord of the lorlds. I would like to thank God for granting upon me the chance, strength, and ability to complete this work. Alhamdulillah.

I wish to express my gratitude to my supervisors, Professor Ahmed Emira and Professor Mohamed Dessouky for their exceptional guidance, encouragement, flexibility, insightful thoughts and useful discussions. I would like to thank Professor Ahmed Emira, who motivated my mind to think and create new ideas in my research. I would like to thank Professor Mohamed Dessouky for his kind guidance and wise advices. Also, I would like to thank Professor Hani Fikry, Khaled Sharaf and Professor Emad Hegazi who introduced me to the world of analog integrated circuit design during my undergrad studies.

This work was a part of a sponsored project in cooperation with Analog and Mixed Signal Center Texas A&M University. I'd like to thank my research workmates Jorge Zarate-Roldan, and Amr Abuellil. We've worked together to finish the design and the testing of the transmitter. I'd like to highlight that all the circuit included in chapter 3 are designed by both of them and we've worked together in the chip integration, verification and testing. The project was supervised by Prof. Faisal Hussien, Prof. Ahmed Emira and Prof. Edgar Sánchez-Sinencio.

I am also very grateful to my first career mentor and godfather Eng Ahmed Saad, ex-engineering director at Silicon Vision who have taught me and inspired me during my graduation project and my early career, I'd like also to thank Eng. Tarek Elesseily (May Allah have mercy on his soul ) for his support and for being the rule model to follow. I deeply would like to thank Eng. Ahmed Salah, Eng Mohammed Tawfik, Eng. Mohammed Samir and Eng Mohammed Mohsen. I have learned a lot from them, on both technical and personal levels. I am in no way capable of appropriately thanking them for their great help to me. Special thanks goes to my colleagues: Amr Ahmed, Mohammed Abdelaal, Nour Hany, Sherif Diaa and Mahmoud Abdelwahb for the many fruitful discussions, encouragement. Many thanks goes to my best friend Maged Elansary for his continuous support .

Finally, and most importantly, I would like to thank my wife Dina. Without her support, motivation and encouragement this work would never have a chance to be finished. She left my spirit when I was desperate and thinking to quit. She brought me back my faith and self-confidence. her patience and unwavering love were undeniably one of the few pillars of my life. I thank my parents, brother and sisters for their faith in me and allowing me to be as ambitious as I wanted. It was under their watchful eye that I gained so much

drive and an ability to tackle challenges head on.

Mo'men Mansour Electronics and Communications Department Faculty of Engineering Ain Shams University Cairo, Egypt 2016 Faculty of Engineering – Ain Shams University Electronics and Communication Engineering Department

Thesis title: "Ultra low power transceiver for no-battery applications"

Submitted by: Mo'men Mansour Mohammed Abu Sareya

Degree: Master of Science in Electrical Engineering

#### Abstract

Mo'men Mansour Mohammed "Ultra Low Power Transceiver for no-battery applications", Master of Science dissertation, Ain Shams University, 2016.

This thesis presents system and circuit design techniques for an Ultra low Power Transmitter (Sub 1mW) to be used in Internet of Things (IoT) and Wireless Sensor Network (WSN) Applications. The implementation is driven by the continuous need for decreasing the energy consumption of wireless transceivers for the WSN and IoT applications, Wireless Sensor networks is seeking continuous reduction in power consumption, since frequent battery change is impractical. This transceiver aims to utilize multiple phases from a ring oscillator to generate higher frequency component at transmitter and receiver side, enabling oscillator design at much lower frequency than carrier frequency, edge-combiner-type power amplifier to operate the oscillator at only 1/3 of the RF frequency. A non-PLL based local oscillator architecture have a fast startup and calibration time to enable further energy saving. The close in phase noise is mitigated by using a largely separated tones for 1's and 0's, treading off the spectral efficiency with the ultra low power consumption. This enables installation of this transceiver on energy harvesting system without using any conventional power source. The transmitter was implemented on standard CMOS  $0.18\mu m$  process (IBM7RF), occupying an active area of 0.112 $mm^2$ . Targeting the ISM band from 902 MHz to 928MHz. The transmitter was tested on a test board using external matching network achieving power consumption lower than 1mW at -10dBm output power.

Keywords: Low Power, Ultra-low Power, Transmitter, PLL-less, Battery-less, Transceiver, Matching Network, PCB, WSN, Ring Oscillator, Edge Combiner, ISM, Radio Frequency, RF, Power Amplifier.

Faculty of Engineering – Ain Shams University

**Electronics and Communication Engineering Department** 

Thesis title: "Ultra low power transceiver for no-battery applications"

Submitted by: Mo'men Mansour Mohammed Abu Sareya

Degree: Master of Science in Electrical Engineering

### Summary

This thesis is divided into six chapters as follow:

Chapter 1 is an introduction including the motivation for this work, followed by the thesis outline.

Chapter 2 includes a survey of the available transmitter and receiver architectures , and the selected architecture .

Chapter 3 describes the circuit level of the Local Oscillator (LO), consisted from a novel Vertical Ring Oscillator along with its calibration circuits. The chapter includes schematics, layouts and simulation results.

Chapter 4 reveals some theoretical background for the PA design, then it will present the design of an edge combiner Power Amplifier and the external impedance matching network, including the iteration that have been done on board level until the final design .

Chapter 5 has the top level integration and verification of the transmitter, it also depict the lab measurements for the chip and achieved results summary.

Chapter 6 is the conclusion for this work and the suggested future work on this system either an optimization or extra features need to be implemented.

### Contents

| $\mathbf{C}$ | onter | nts            |                                            |      |   |   | Х  | ix  |
|--------------|-------|----------------|--------------------------------------------|------|---|---|----|-----|
| Li           | st of | Figur          | es                                         |      |   | - | XX | iii |
| Li           | st of | Table          | $\mathbf{s}$                               |      |   |   | X  | xv  |
| N            | omer  | nclatur        | <b>·e</b>                                  |      |   | Х | CX | vii |
| 1            | Intr  | oducti         | ion                                        |      |   |   |    | 1   |
|              | 1.1   | Motiv          | ation                                      |      |   |   |    | 1   |
|              | 1.2   | Thesis         | s Organization                             |      |   |   |    | 3   |
|              | 1.3   | Summ           | nary                                       |      |   |   |    | 4   |
| 2            | Tra   | $_{ m nsmitt}$ | er System Level                            |      |   |   |    | 5   |
|              | 2.1   | Introd         | luction                                    |      |   |   |    | 5   |
|              | 2.2   | TX ar          | chitecture survey                          |      |   |   |    | 5   |
|              |       | 2.2.1          | Basic TX architectures                     |      |   |   |    | 5   |
|              |       |                | 2.2.1.1 Mixer based transmitters           |      |   |   |    | 6   |
|              |       |                | 2.2.1.2 PLL based transmitters (LO modulat | ion) | ) |   |    | 7   |
|              |       | 2.2.2          | Low power architectures and techniques     |      |   |   |    | 11  |
|              | 2.3   | Rx are         | chitecture survey                          |      |   |   |    | 14  |
|              |       | 2.3.1          | Basic RX architectures                     |      |   |   |    | 14  |
|              |       | 2.3.2          | Low power RX approaches <sup>1</sup>       |      |   |   |    | 16  |
|              | 2.4   | Target         | t Specifications                           |      |   |   |    | 19  |
|              | 2.5   | Select         | ed Architecture                            |      |   |   |    | 20  |

<sup>&</sup>lt;sup>1</sup>This section is adopted from [44]