

Evaluation of antitumor activity of nanogallium and low dose of gamma irradiation in animal model

A Thesis Submitted to Faculty of Science, Ain Shams University For Partial Fulfillment of Master degree of Science in Biochemistry

By

Ola Mohamed Sayed Khedr

B.Sc. in Biochemistry and Chemistry (2011)

Faculty of Science Ain Shams University

Evaluation of antitumor activity of nanogallium and low dose of gamma irradiation in animal model

Thesis Submitted to Faculty of Science, Ain Shams University For Partial Fulfillment of Master degree of Science in Biochemistry

By

Ola Mohamed Sayed Khedr

B.Sc. in Biochemistry and Chemistry (2011)
Faculty of Science
Ain Shams University

Under Supervision Of

Dr. Eman I. Kandil

Prof. of Biochemistry Biochemistry Dep. Faculty of Science Ain Shams University

Dr. Sawsan M. Elsonbaty

Assist. Prof. of Biochemistry Radiation Microbiology Dep. NCRRT-Atomic Energy Authority

Dr. Fatma S.M. Moawed

Lecturer of Biochemistry Health Radiation Research Dep. NCRRT-Atomic Energy Authority

> Faculty of Science Ain Shams University 2017

بيتم التَّوَالْتَحْ إِلَّكُو الْتَحْمِي

وَمَا تَرْفِيتِي إِلَّا اللَّهِ عَلَيْهِ اللَّهِ عَلَيْهِ تَمُكُلِّتُ وَالنَّهُ النَّهُ النَّهُ عَلَيْهِ النَّهُ النّهُ النَّهُ النَّالُهُ النَّهُ النَّا اللَّهُ النَّهُ النَّهُ النَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ النّهُ النَّهُ اللَّهُ النَّهُ اللَّهُ اللَّا اللَّهُ اللّ

Approval Sheet

Evaluation of antitumor activity of nanogallium and low dose of gamma irradiation in animal model

By Ola Mohamed Sayed Khedr

Submitted to

Biochemistry department, Faculty of Science, Ain Shams University

Supervision Committee

Approved

Dr. Eman I. Kandil

Prof. of Biochemistry Biochemistry Dep. Faculty of Science Ain Shams University

Dr. Sawsan M. El-sonbaty

Assist. Prof. of Biochemistry Radiation Microbiology Dep. NCRRT-Atomic Energy Authority

Dr. Fatma S.M. Moawed

Lecturer of Biochemistry Health Radiation Research Dep. NCRRT-Atomic Energy Authority First, foremost, and all thanks to Allah by whose grace this work had been completed and by whose grace all my life is arranged in the best. Nobody can imagine this way that had been drawn by the mercifulness of Allah.

Declaration

I declare that this thesis has been composed by me and it has not been submitted for a degree at this or any other university.

Ola Mohamed Sayed Khedr

Dedication

I dedicate this work to all members of my dear family for their support and continuous backing in which this work was accomplished.

Ola Mohamed Sayed Khedr

Acknowledgement

I would like to express my profound regards to the following people who gave guidance, strength, and encouragement in making this work possible.

My deep gratefulness and special thanks to **Dr.Eman I. Kandil**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt, For her kind sponsoring the present work, suggesting the topic, planning the work, illuminating advice, supervision, reading, unlimited help, kind encouragement, her fruitful reading, reviewing and constructive criticizing of the manuscript.

I would like to express my deep thanks and my grateful to **Dr.Sawsan M. Elsonbaty**, Assist. Professor of Biochemistry, Radiation Microbiology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt, For her unlimited helps, scientific advices, review the manuscript and many invaluable discussions and professional guidance during all steps of thesis preparation.

I also express my deep thanks to **Dr. Fatma S.M. Moawed**, Lecturer of Biochemistry at Health Radiation research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt, For her continuous encouragement and advice, her fruitful reading and reviewing the manuscript and helping with her experience.

Finally, Special thanks to all my colleagues at Ain Shams University and The National Center for Radiation Research and Technology (NCRRT), for their sincere support and assistance.

CONTENTS

Items	Page
Abstract	i
List of Abbreviations	ii
List of Figures	V
List of Tables	vii
Introduction	1
Aim of the work	5
I. Review of Literature	6
I.1.Cancer	6
I.2.Cancer in Egypt	7
I.3.Types of cancer	7
I.4.Ehrlish ascites carcinoma	8
I.5.Cancer risk factors	9
I.5.1.Intrinsic cancer risk factors	10
I.5.2. Extraneous cancer risk factors	11
I.6.Multistep carcinogenesis	15
I.7.Cancer and mitochondria	17
I.8.Cancer therapy	21
I.9.Nanoparticles	23
I.10.Biological synthesis of nanoparticles	25
I.11.Microbial routes for nanoparticle synthesis	26
I.12. Nanoparticles and cancer treatment	27
I.13.Metals and cancer treatment	28
I.14.Gallium	29
I.15.Gallium in the treatment of cancer	30
I.16.Gallium compounds used in cancer treatment	33
II. Materials and Methods	34
II.1.Materials	34
II.1.1.Chemicals	34
II.1.2.Bacteria	34
II.1.3.Cell line	34

Contents

II.1.3.1. Ehrlich ascites carcinoma (EAC) cell line	34
II.1.3.2. Human breast cancer (MCF-7) Cell line	34
II.1.4.Experimental animals	34
II.1.5.Gamma irradiation	
II.2.Methods	
II.2.1.Cultivation of <i>Lactobacillus helveticus</i>	35
II.2.2.Biosynthesis of gallium nanoparticles	36
II.2.3.Charaterization of gallium nanoparticles	36
II.2.3.1.Transmission electron microscope (TEM)	36
analysis	
II.2.3.2. Fourier transforms infrared	37
spectroscopy(FTIR)	
II.2.3.3 Ultraviolet-visible absorption (UV/VIS)	38
II.2.4.Antitumor activity of gallium nanoparticles	38
II.2.4.1. <i>In vitro</i> study	38
II.2.4.2.In vivo study	40
II.2.4.2.1.Determination of LD ₅₀ using experimental	41
animals	
II.2.5.Experimental Design	41
II.2.6.Blood and tissue sample preparation	43
II.2.6.1. Blood sampling	43
II.2.6.2. Tissue sampling	43
II.2.7.Tumor volume determination	44
II.2.8.Biochemical parameters	44
II.2.8.1. Determination of total leukocytic count	44
II.2.8.2.Determination of serum alanine amino-	45
transferase activity	
II.2.8.3.Determination of serum creatinine level	47
II.2. 8.4. Determination of Malondialdehyde level in	49
the liver tissue	
II.2.8.5.Determination of reduced glutathione content	51
in the liver tissue	
II.2.8.6. Determination of total proteins in the liver	53

Contents

and tumor tissues	
II.2.8.7.Determination of Na ⁺ K ⁺ ATPase activity in	54
the liver and tumor tissues	
II.2.8.8.Determination of iron and calcium	56
concentrations in the liver and tumor tissues	
II.2.9.Molecular studies	57
II.2.9.1.Isolation of mitochondria	57
II.2.9.2.Gene expression of complex II, III and	58
cytochrome P450 2E1 in the liver and tumor tissues	
II.2.9.2.1.RNA extraction and cDNA synthesis	58
II.2.9.2.2.Quantitative reverse transcription	59
polymerase chain reaction (RT-PCR)	
II.2.9.3.Qualitative analysis of DNA fragmentation by	60
agarose gel electrophoresis	
II.3.Histopathological examination	63
II.4.Statistical analyses	64
III-Results	65
IV-Disscusion	115
Summary and Conclusion	136
V-Referances	140
Arabic Summary	
Arabic abstract	

Abstract

ABSTRACT

Chemotherapy combined with radiotherapy is approach for cancer treatment. In the present study, Gallium nanoparticles were biologically synthesized by using Lactobacillus helveticus extracellular metabolites. Gallium nanoparticles were characterized by using transmission electron microscopy (TEM) analysis, Fourier transforms infrared spectroscopy (FTIR) and Ultraviolet-visible absorption (UV/VIS), revealed that; GaNPs were of size ranging 6-20 nm. The FTIR analysis of GaNPs showed shifting in wave number of functional groups due to their involvement in GaNPs capping and synthesis. UV/VIS scan showed absorption peak of GaNPs at 265 nm. GaNPs effectively inhibited MCF-7 proliferation in vitro with IC₅₀ of 8.0µg/ml. In vivo study, GaNPs LD₅₀ was found to be 10 mg/kg b.w. Evaluation of GaNPs antitumor effect and/or gamma radiation in vivo, was performed using 80 female swiss albino mice. They were divided into 8 groups, each of 10 mice. Mice were inoculated intramuscular with Ehrlich ascite carcinoma cells in the right thigh to induce a solid tumor. The results revealed that solid tumor induced a significant increase in serum ALT activity, serum creatinine level, total leucocytic count, liver MDA content, liver calcium and liver iron concentrations While GSH, CYP2E1 and Na⁺K⁺ATPase showed significant decrease compared to control group. Treating Ehrlich carcinoma (EC) bearing mice with GaNPs and/or exposure to low dose of γ-radiation (0.25 Gy) significantly reduced tumor volume, ALT activity, creatinine level and TLC in mice serum and blood respectively. Moreover, biochemical studies in the liver tissue showed a significant increase in glutathione level, Na⁺K⁺ATPase activity, CYP450 (2E1) gene expression with a significant decrease in MDA content, the calcium and iron concentrations compared to EC group. Meanwhile, biochemical studies in the tumor tissue showed a significant increase in MDA content, Na⁺K⁺ATPase, complexes II and III activity with a significant reduction in GSH level, calcium, iron concentrations and CYP450 (2E1) gene expression in mitochondria upon comparison with EC group. Also DNA fragmentation pattern of tumor tissue showed intense fragmentation accompanied with different treatments compared to EC group. Results indicate a synergestic effect of combined treatment against Ehrlich solid tumor which was well confirmed with the histopathological findings in the tumor tissue of treated groups compared to EC group.

List of Abbreviations

ADP	Adenosine DiPhosphate
ALT	Alanine Aminotransfese
ANOVA	Analyzed Using One way analysis of Variance
AsGa	Arsenium–Gallium
ATCC	Addiction Technology Tranfer Centre
ATP	Adenosine TriPhosphate
BAX	Bcl-2-associated X protein
BREC	Bovine Retinal Endothelial Cells
C	Control
Ca	Calcium
CoQ	Coenzyme Q
Cs	Caesium
CYP P450	Cytochrome P450
CYP2E1	Cytochrome P450 2E1
Cyt c	cytochrome c
DMSO	Dimethyl sulfoxide
DNA	deoxyribonucleic acid
dNDP	desoxynucleotide diphosphate
DTT	Dithiothreitol
EAC	Ehrlich Ascites Carcinoma
EC	Ehrlich Carcinoma
EDTA	Ethylene Diamine Tetra Acetic Acid
ELISA	Enzyme-linked immunosorbent assay
EPR	Enhanced permeability and retention