

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

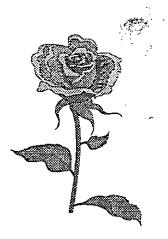
نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %



Bralu

I dedicate this work to my family

ACKNOWLEDGEMENT

For whom no words of thanks and feelings are sufficient. I would like to express my profound gratitude to prof. Dr. Mostafa. Aboul Enein, Professor of clinical Pathology, NCI, Cairo University, who offered me without any limitation and gave me much of his valuable time. I have the honor to present this study under his supervision.

I'm greatly indebted to prof. **Dr. mahmoud H. Fawzy ELGuibaly**, professor of clinical pathology, NCI, Cairo University for his cooperative attitude.

I sincerely thank **Dr. Lobna Abdel Azeem Refaat**, Assistant Professor of clinical pathology, NCI, Cairo University, for her helpful role, excellent advice and guidance.

My profound thanks to **Dr. Khaled Mostafa Aboul Enein**, Assistant professor of Clinical pathology, NCI, Cairo University, for his patience and help throught the practical work of this study.

I would also like to express my gratitude to prof. **Dr. Hussein Gaballah**, Lecturer of medical oncology, NCI, Cairo University, for his assistance.

I'm grateful to prof. **Dr. Enas El Atar**, professor of biostatistics and head of the department for her great contribution in biostatistical analysis of this study.

, . .

LIST OF CONTENTS

INTRODUCTION AND AIM OF WORK	1	
REVIEW OF LITERATUR	3	
Cancer breast	3	
Normal haemostasis	16	
The endothelium	37	
Major components involved in endothelial damage	50	
PATIENTS AND METHODS	75	
RESULTS	95	
DISCUSSION	.119	
SUMMARY AND CONCLUSION	129	
REFERENCES 133		
ARABIC SUMMARY		

List of abbreviations

13-HoDE: 13- Hydroxy -octadecadienoic acid

APC: Activated protein C

ADP: Adenosine diphosphate

ATIII: Antithrombin III

ATP: Adenosine Triphosphate

BSA: Bovine serum Albumin

C4b: Complement component 4b binding protein

Ca²⁺: Calcium ions

C-AMP: cyclic adenosine monophosphate

CT: computerized tomography

DCI: ductal carcinoma in situ

DIC: disseminated intravascular coagulation

ECs: Endothelial cells.

EDCF: Endothelial derived contracting factor

EDRF: Endothelial derived releasing factor

EGF: epidermal growth factor

ELISA: Enzyme-linked immunosorbent assay

FDP: fibrin degradation products

FSP: fibrin split products

Gp: glycoprotein

HC.II: heparin co-factor II

HMWK: High molecular weight kiningen

HRP: horse radish peroxidase

ICAM: intracellular adhesion molecule

List of tables

Table (1):	Incidence of breast cancer with age
Table (2):	follow-up studies of breast cancer & incidence after radiotherapy for lymphoma4
Table (3):	Risk of breast cancer after multiple diagnostic x-rays
Table (4):	Presenting symptoms in 1205 patients with operable breast cancer
Table (5):	Traditional prognostic parameters for human mammary carcinoma
Table (6):	Inhibitory affect of serine –protease inhibitors34
Table (7):	Summary of endothelial cells mediators49
Table (8):	A revised classification of vWD66
Table (9):	Clinicopathological data and biochemical findings of early breast cancer cases
Table (10):	Clinicopathological data and biochemical findings of metastatic breast cancer cases
Table (11):	Control normal levels of T.M. vWF, PGI2102
Table (12):	T.M levels in early breast cancer as compared to normal control
Table (13):	T.M levels in metastatic breast cancer as compared to normal control
Table (14):	Comparative analysis of mean of T.M levels between control, early and metastatic breast cancer cases105

IDC:

invasive duct carcinoma

Ig:

immunoglobulin

KDa:

Kilodalton

LACI:

Lipid -associated coagulation inhibitor

O.D:

Optical density

OCS:

open canalicular system

PAF.

Platelet activating factor

PAI:

plasminogen activator- inhibitor

PC

Protein C.

PCI:

protein C inhibitor

PDGF:

platelet derived growth factor

PECAM:

platelet- Endothelial cell adhesion molecule

PF3:

platelet factor 3

PG:

prostaglandin

PGI2:

prostacyclin

PLA2 ·

phosholipase A2

PNBB:

para nitrophenyl phosphate

SLE:

systemic lupus ervthromatosis

TF.

tissue factor

TM:

thrombomodulin

TMP:

tetramethylbenzidine

TNF:

tumor necrosis factor

T-PA:

Tissue- type plasminogen activator

Tx:

Thromboxane

u-PA:

Urokinase- plasminogen activator

VCAM:

vascular cell adhesion molecule

vWD:

von Willebrand disease

vWF: AgII: von Willebrand factor: Antigen II

vWF:

von Willebrand factor

List of figures

Fig (1):	Diagramatic representation of the ultrastructure	
	of platelets	17
Fig (2):	Synthesis of prostaglandins in platelet and Endothelia	ıl
	cells during plug formation	24
Fig (3):	the cascade theory of coagulation	26
Fig (4):	the fibrinolytic system	30
Fig (5):	plasmin action on fibrinogen	31
Fig (6):	Activation of protein C system	35
Fig (7):	Hemostatic properties of Endothelium	38
Fig (8):	structural domain of human T.M	54
Fig. (9):	A- vWF structural and binding domains	59
	B- vWF multimerization	
Fig(10, 11)): The Arachidonate cascade	68,69
Fig (12):	Reference calibration curve of T.M.	92
Fig (13)	Reference calibration curve of V.W.F	93
Fig (14)	Reference calibration curve PGI2	94
Fig (15):	comparative analysis of mean of T.M levels between	
	control, early and metastatic breast cancer cases	113
Fig (16):	comparative analysis of mean of vWF levels between	
	control, early and metastatic breast cancer cases	114
Fig (17):	comparative analysis of mean of PGI2 levels between	
	control/ early and metastatic breast cancer cases	115
Fig (18):	correlation between T.M and v.W.F.	116
Fig (19):	correlation between T.M and PGI2	117
Fig (20):	correlation between PGI2 and vWF	118

Table (15):	v.W.F levels in early breast cancer as compared to normal controls
Table (16):	v.W.F levels in metastatic breast cancer as co.mpared to normal control
	comparative analysis of mean of vWF levels ween control, early and metastatic breast cancer cases108
Table (18):	PGI2 levels in early breast cancer as compared to normal control
Table (19):	PGI2 levels in metastatic breast cancer as compared to normal control
	Comparative analysis of mean of PGI2 levels ween control, early and metastatic breast cancer cases111
Table (21):	Correlation of the 3 different biochemical parameters studied in breast cancer cases
Table (22):	Correlation of the 3 different biochemical parameters in metastatic breast cancer group in relation to number of metastatic site

.

•