

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Mansoura University

Faculty of Engineering

Electronics&Comm.Eng.Dep.

FPGA Application in Digital Circuit

Thesis Submitted in a Partial Fulfillment for the

Master of Science Degree In

Communications Eng.

By

Eng. Ahmed Mohamed Abd El-Gawad

B.Sc Electronics and Comm. (1997)

Supervised by:

Prof.Dr. Mohy Eldin Ahmed Abo El-Soud

Electronics & Comm. Dept.

Faculty of Engineering, Mansoura University

Ass.prof. Iman Sobhy Ashour

Electronics Dept.

National Telecommunication Institute (NTI)

(2003)

Mansoura University
Faculty of Engineering
Electronics & Comm. Eng Dep.

FPGA Application in Digital Circuit

By

Eng. Ahmed Mohammed Abd El-Gawad

Supervised by:

Prof.Dr. Mohy Eldin Ahmed Abo El-Soud

Electronics & Comm. Dept.

Faculty of Engineering, Mansoura University

Ass.prof. Iman Sobhy Ashour

Electronics Dept.

National Telecommunication Institue

SUPERVISOR

Thesis title:

FPGA Application in Digital Circuit

Researcher name:

Eng. Ahmed Mohammed Abd El-Gawad

B.Sc. Electronics and Communications Engineering 1997.

Supervisor:

NAME	POSITION	SIGNATURE
Prof.Dr.Mohy Eldin Ahmed	Electronics &Comm. Dept.	
Abo El-Soud	Faculty of Engineering,	
	Mansoura University	
	·	
	Electronics Dept.	
Ass.Prof. Iman Sobhy	National Telecommunication	
Ashour	Institute	
		,

ACKNOWLEDGEMENTS

Many thanks to God, who guided and aided me to bring forth light this thesis.

I would like to express my deep gratitude to my advisors

Prof. Mohy Eldin A. Abo El-Soud, Ass. Prof. Iman Sobhy Ashour

For suggesting the point of search as well as their valuable guidance, constant encouragement, and instructive comments during the implementation of this work.

My Cardinal gratitude are dedicated to My Family

Eng. Ahmed Mohamed Abd El-Gawad

DEDICATION

Thanks to God who helped me to finish this research. From my heart and my soul, I dedicate this work

Especially to

My mother

My little baby

Salma

My wife

Ahmed M. Abd El-Gawad

List of Abbreviations

ATE Automatic Test Equipment **BIST** Built In Self Test BUT **Board Under Test** CAD Computer-Aided Design Complementary Metal Oxide Semiconductor **CMOS** Commercial Off The Shelf **COTS** CUTCircuit Under Test DFTDesign for Test Defect Level DLDynamic RAM DRAM **EDIF** Electronic Design Interchange Format Erasable Programmable Read Only Memory *EPROM* **EEPROM** Electrical Erasable Programmable Read Only Memory FCFault Coverage Field Programmable Gate Array **FPGA FSM** Finite State Machines *IC* **Integrated Circuit ICT In-Circuit Testing LCD** Liquid Crystal Displays LFSR Linear Feedback Shift Register LRULine Replaceable Unit LSI Large Scale Integration **MCM** Multichip Module Multiple Input Shift Register MISR MSI-Medium Scale Integration **OEM** Original Equipment Manufacturer Printed Circuit Board **PCB** PALProgrammable Array Logic **PLD** Programmable Logic Device Programmable Read Only Memory **PROM** Rapid Prototyping of Application Specific Signal Processors RASSP Read Only Memory ROM SOC System On Chip Static RAM **SRAM** Single Stuck-at SSA **Small Scale Integration** SSI **TPS** Test Program Set TTLTransistor Transistor Logic Very high speed integrated circuit Hardware Description Language VHDL **VLSI** Very Large Scale Integration Yield

List of Figures

Figure 1.1 The vendor's check on correct wafer fabrication	2
Figure 1.2 The IC vendor/OEM test procedures for a custom IC	
before assembly and test in final production system	3
Figure 1.3 The defect level	6
Figure 1.4 A typical general-purpose VLSI tester	8
Figure 2.1 Application circuit	23
Figure 2.2 Scan Flip-Flop.	23
Figure 2.3 Finite State Machine with Scannable Flip-Flops	25
Figure 2.4 BIST Hierarchies	27
Figure 2.5 BIST configurations	31
Figure 2.6 Linear feedback shift register which consists of	
16 D-type Flip-flops in cascade	32
Figure 2.7 A simple example of a maximum length pseudorandon	n
sequence for a four stages shift register	33
Figure 2.8 The two principal LFSR circuit configurations.	
a. Type A. b. Type B	35
Figure 2.9 Equivalent type B MISR	36
Figure 3.1 Classes of FPGAs	39
Figure 3.2 The FPGA	42
Figure 3.3 CLBs Interconnects	43
Figure 3.4 Configurable Logic Blocks	43
Figure 3.5 Design Entry	44
Figure 3.6 Design Implementation	45
Figure 3.7 Design Verification	46
Figure 3.8 FPGA Configuration	46

Figure 4.1 Previous system	.47
Figure 4.2 System block diagram	
Figure 4.3 FPGA chip interface	48
Figure 4.4 Proposed system	49
Figure 4.5 BIST configuration	50
Figure 4.6 LFSR code	51
Figure 4.7 MISR block diagram	52
Figure 4.8 D-Flip-Flop code	53
Figure 4.9 X-or code	54
Figure 4.10 Control code	55
Figure 4.11 Data_R block diagram	56
Figure 4.12 LCD driver block diagram	57
Figure 4.13 Address counter code	58
Figure 4.14 Address data code	58
Figure 4.15 LCD control flow chart	. 59
Figure 5.1 Block diagram of simulation system	61
Figure 5.2 Matlab code	62
Figure 5.3 Simulation for S208 ISCAS 89 benchmark circuit	63
Figure 5.4 Simulation for S298 ISCAS 89 benchmark circuit	64
Figure 5.5 Simulation for S344 ISCAS 89 benchmark circuit	65
Figure 6.1 Schematic diagram of the proposed system	68
Figure 6.2 Component assignments of the proposed system	69
Figure 6.3 Schematic diagram of BUT	
Figure 6.4 Component assignments on the board.	
Figure 6.5 The block diagram of the tested circuit in Renoir.	
Figure 6.6 FC curve of BUT.	74

List of Tables

Table 1.1 An example of a test set for a combinational	
network with eight inputs and four outputs	. 9
Table 3.1 Characteristics of FPGA Technology	40
Table 3.2 Commercial FPGAs	41
Table 5.1 Percentage of fault coverage at each clock	
cycle for S208	64
Table 5.2 Percentage of fault coverage at each clock	
cycle for S298	65
Table 5.3 Percentage of fault coverage at each clock	
cycle for S344	66
Table 5.4 A comparisons between the proposed	
system and the recent result	66
Table 6.1 Some of data for some of technologies	70
Table 6.2 The pin assignment of EPF10K20RC208 chip	71
Table 6.3 The fault coverage at every clock cycle for the BUT	75

Summary

Increasing circuit complexity, higher performance and the demand for high quality levels is causing the industry to question currently used functional and specification based test programs. In addition, the escalating cost of production test equipment capable of measuring high performance device parameters is in many cases becoming a limiting factor.

Pseudorandom testing could be of value to digital circuits, since it does not need any effort in test generation. The pseudorandom testing methodology can also be easily applied to any class of boards under study, so we use this technique in our proposed system. In the proposed system the testing takes place as follow:

At first the Board Under Test (BUT) will simulated to get the signature of free fault circuit and all possible faults signatures. All signatures will be stored in the FPGA, which will contain also the testing system. The proposed system used to generate random pattern. This pattern will be access to the BUT. The response will access to the proposed system to compress it by using Multiple Input Shift Register (MISR) to get signature. The signature will be compared with all signatures stored to know if the BUT is fault free or faulty and what is the fault. The result will appear on an LCD.

In this thesis one chip (FPGA) is used to implement an automatic testing Equipment (ATE), implemented and tested successfully. An Altera Flex10k EPF10K20RC240 chip was used in the implementation.