The Effect of Cantilever Bar Length on Stresses Induced in Tooth-Supported Mandibular Overdenture Supporting Structure

Thesis submitted to the Faculty of Dentistry Ain Shams University, for the Partial Fulfillment of the Master Degree in Oral and maxillofacial Prosthodontics

By
Mohamed Ali Mohamed El Maroush
Faculty of Dentistry
Elfateh University
2005

Faculty of Dentistry Ain Shams university 2009

Supervisors

Prof. Dr. Ingy A. Talaat Lebshtien
Professor and Chairman of Prosthodontics
Department, Faculty of Dentistry,
Ain Shams University

Dr. Magdy Eid Mohamed Assistant professor of prosthodontics Faculty of Dentistry, Ain Shams University

تأثير طول القضبان الممتدة على توزيع القوى في حالات الأطقم الكاملة المحمولة بدعامات سنية

رسالة مقدمة لقسم الاستعاضة الصناعية بكلية طب الأسنان جامعة عين شمس للحصول على درجة الماجستير في الاستعاضة الصناعية للفم والوجه والفكين

مقدمة من الطبيب / محمد علي محمد المرعوش بكالوريوس طب وجراحة الفم والأسنان جامعة الفاتح

كلية طب الأسنان _ جامعة عين شمس ٢٠٠٩

تحت إشراف

أ. د. انجي أمين طلعت لبشتين أستاذ ورئيس قسم الاستعاضة الصناعية كلية طب الأسنان - جامعة عين شمس

د. مجدي عيد محمد أستاذ مساعد لقسم الاستعاضة الصناعية كلية طب الأسنان - جامعة عين شمس

مُلُمُكُ مَا لَمْ تَكُنُ تَعْلَمُ مَلِكُمْ مَكُنُ تَعْلَمُ لَكُمْ كَالْمُكَ كَالْمُكَ كَالْمُكَ كَالْمُكَ كَالْمُكَ كَالْمُكَ كَالْمُكَ كَالْمُكَا لَا اللّهِ عَلَيْكُمُا لَا اللّهِ عَلَيْكُمُا لَا اللّهُ عَلَيْكُمُ لَا اللّهُ عَلَيْكُ لَا اللّهُ عَلَيْكُمُ لَا اللّهُ عَلَيْكُمُ لَا عَلَيْكُمُ لَا اللّهُ عَلَيْكُمُ لَا عَلَيْكُمُ لَا اللّهُ عَلَيْكُمُ لَا عَلْكُمُ لَا عَلَيْكُمُ لَا عَلْكُمُ لَا عَلَيْكُمُ لَا عَلَيْكُمُ لَا عَلَيْكُمُ لَا عَلَيْكُمُ

رياله ج العظريم

سورة النساء، الآية 112

ACKNOWLEDGEMENT

Before reviewing the contents of my thesis, I would like to express my thanks and gratitude to **ALLAH** and then to all those who helped me to achieve my work.

At first, I would like to thank Prof. DR. *Ingy Talaat Lebshtien*, Professor & Chairman of prosthodontic Department ,Faculty of Dentistry, Ain shams University, for being always supportive and understanding, and for being always present whenever needed.

I am also deeply grateful to DR. *Magde Eid Mohamed*, Assistant Professor of Prosthodontics, Faculty of Dentistry, Ain shams University, for his guidance and advice throughout this research.

Special thanks for Prof. DR. *Mohamed Salah El-Din Ayoub*, Professor of oral pathology, and vice dean of Ain shams University, for his great help and also giving me generously of his time.

Finally, I would like to express my deep appreciation to all staff member of prosthodontic Department ,Faculty of Dentistry, Ain Shams University.

LIST OF CONTENTS

		Page
1	Introduction	1
2	Review of Literature	4
	Overdenture	4
	Advantage of overdenture	4
	Disadvantage of overdenture	6
	Indication of overdenture	8
	Contraindication of overdenture	9
	Classification of overdenture	9
	 Tooth-supported overdenture 	9
	Implant-supported overdenture	13
	Overdenture abutments	13
	Overdenture abutments selection	13
	Overdenture abutment preparation	15
	 Abutment without coping 	15
	Abutment with coping	16
	Abutment with secondary coping "telescopic"	19
	Submerged abutments "submerged roots"	20
	Abutment with attachments	21
	Attachment selection	
	 Stud "pressure button" attachments 	23
	Magnetic attachments	24
	3. Bar attachments	25
	4. Auxiliary attachments	31
	Methods of stress analysis	31
	 Brittle lacquer coating method 	32
	Photo- elastic technique	33

	Stero -photogrammetic analysis	34
	4. Finite element	34
	5. Strain gauge	35
	Principle of strain gauge	36
	Wheat stone bridge	37
3	Aim of study	38
4	Material and methods	39
	Model construction	39
	Preparation of the abutment	43
	Construction of the overdenture	43
	Simulation of the mucosa	55
	Installation of the strain gauges	55
	Simulation of the periodontal ligament	58
	Load application and recording measurement	60
5	Results	65
6	Discussion	85
7	Summary and conclusions	94
8	Recommendations	96
9	References	97
10	Arabic summary	

LIST OF FIGURES

Figure		Page
1)	Wheatstone bridge	37
2)	Educational acrylic model containing the	40
	two canines.	
3)	Rubber base impression of the model.	40
4)	The canines positioned in the rubber	41
	base impression with their roots wrapped	
->	by tin foil.	4.4
5)	Cast in wax containing the 2 canines.	41
6)	The duplicated acrylic cast.	42
7)	Dome shaped reduction of the abutment teeth.	44
8)	Rigid bar connecting the two canines.	44
9)	Rigid bar with 7 mm distal cantilever bar extension.	45
10)	Rigid bar with 15 mm distal cantilever bar extension.	45
11)	The duplicated stone cast.	46
12)	Wax pattern of the copings connected	48
,	with the bar.	
13)	Wax pattern of the connected copings	48
,	with 7 mm distal cantilever bar extension.	
14)	Wax pattern of the connected copings	49
,	with 15 mm distal cantilever bar	
	extension.	
15)	The three bar attachments.	49
16)	Design I, the cast bar attachment on the	50
- /	model connecting the two canines.	
17)	Design II, the cast bar attachment on the	50
,	model with 7mm distal cantilever bar	
	extension.	
18)	Design III, the cast bar attachment on	51
- /	the model with 15mm distal cantilever	-

	bar extension.	
19)	The finished overdenture.	53
20)	Clip placed in its position on the bar.	53
21)	The clip attachment secured to the	54
	acrylic overdenture.	
22)	Stone index of the ridge.	56
23)	Light body rubber base simulating the mucosa.	56
24)	The strain gauge(A&B).	57
25)	Strain gauge positioned on the distal aspect of the abutment and the ridge.	59
26)	Load application to the acrylic model.	61
27)	Diagram showing wheatstone electronic bridge circuit.	63
28)	Mean values of the recorded microstrains with unilateral load application for the three studied design.	67
29)	Mean values of the recorded microstrains with bilateral load application for the studied designs.	70
30)	Mean values of the recorded microstrains for design I.	72
31)	Mean values of the recorded microstrains for design II.	73
32)	Mean values of the recorded microstrains for design III.	75
33)	Mean values of the recorded microstrains from the abutment and ridge for the first design.	77
34)	Mean values of the recorded microstrains from the abutment and ridge for the second design.	78
35)	Mean values of the recorded microstrains from the abutment and ridge fro the third	79

- design.
- 36) Mean values of the recorded microstrains 81 on the abutments and residual ridge for design I on unilateral and bilateral loading.
- 37) Mean values of the recorded microstrains 82 on the abutments and residual ridge on unilateral and bilateral loading for design II.
- 38) Mean values of the recorded microstrains 84 on the abutments and residual ridge on unilateral and bilateral loading for design III.

LIST OF TABLES

Table No.	Description	Page
Table (1)	Mean values, standard deviation, ANOVA and LSD tests for the three designs with unilateral loading.	67
Table (2)	Mean values, standard deviation (SD) repeated measures ANOVA and LSD tests in the three designs with bilateral loading.	69
Tables (3)	Mean values, standard deviation and paired t-test for unilateral and bilateral stresses for design I.	71
Table (4)	Mean values, standard deviation and paired t-test for unilateral and bilateral stresses for design II.	73
Table (5)	Mean values, standard deviation and paired t-test for unilateral and bilateral stresses for design III.	75
Table (6)	Mean values, standard deviation and paired t-test for comparison between stresses at the abutment	76
Table (7)	and ridge for design I. Mean values, standard deviation and paired t-test for comparison between stresses at the abutment and ridge for design II.	78
Table (8)	Mean values, standard deviation and paired t-test for stresses at the abutment and ridge for design III.	79
Table (9)	Mean values, standard deviation and results of paired t-test for stresses at the right and left side for	80
Table (10)	design I. Mean values, standard deviation and results of paired t-test for stresses at the right and left side for	82
Table (11)	design II. Mean values standard deviation and	83

results of paired t-test for stresses at the right and left side for design III.

INTRODUCTION

Tooth supported overdenture is one of the most effective preventive prosthetic measures for the treatment of the pre-edentulous patients with severely mutilated dentition. Numerous articles have addressed the functional benefits of complete dentures supported by few remaining natural roots⁽¹⁻³⁾

These natural physiologic abutments offer more support and stability for dentures, reducing stresses transmitted to the alveolar bone and thereby preserve the alveolar bone height. The role of proprioceptors present in their retained roots is not only feedback mechanism, but also direction and tactile force sensitivity, dimensional discrimination and motor responses. The discriminatory tooth proprioceptors are also important for mandibular positional sensitivity and centric relation record. In tactile sensitivity, addition. vertical and horizontal stabilization. contributes to better masticatory performance encountered in overlaid denture wearers. improvement in function together with preservation of the mandibular ridge point out the importance of this treatment modality(1-3).

Various treatment modalities are used in conjunction with overdenture for the remaining mandibular canines. The root may have only a denture supporting function or they may serve to provide both support and retention. The use of a wide variety of attachment system, including stud, magnet and bar attachments have proven both clinically predictable and effective results.

Bar attachments have been used, because they provide a splinting mechanism between the overdenture

١

abutment teeth and increase the stability and retention of prosthesis. Bar attachment consists of a sleeve, incorporated in the overdenture which clips over a bar attached to the abutment teeth. The overdenture bar attachments are classified by their biomechanical behavior into rigid, and resilient attachment⁽²⁾

In an attempt to minimize the undesirable forces transmitted to the overdenture supporting structures , a short (5-7 mm) and long (13-15 mm) distal cantilever extension bar have been suggested (4-6).

Cases that require increased retention such as compromised ridge and cases exhibiting high muscle attachments, prominent mylohyoid ridges, or extreme gaggers have been indicated for cantilever bars. The cantilever design may satisfy the increased demand for retention and tissue protection providing a more economic treatment approach⁽⁴⁾.

Inspite of the functional advantages offered by cantilever supported prosthesis, the distal cantilever bar may cause bending moments which may lead to mechanical failure and subject the abutments and their supporting structures to excessive bone resorption.

Many experimental stress analysis methods have been employed to evaluate biomechanical loads. These techniques compromise photo- elastic stress analysis, strain gauge analysis, holographic iterferromtry and finite element stress analysis.

Although, Long term studies have been published evaluating the generalized effect of overdenture attachment on denture supporting structures, however