

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

MANSOURA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER ENG. DEPT.

APPLICATION OF ABSORPTION COOLING SYSTEM FOR PERFORMANCE ENHANCEMENT OF HURGHADA GAS TURBINE POWER PLANT

A THESIS

Submitted in Partial Fulfillment for the Degree of MASTER OF SCIENCE

By

Medhat Ahmed El-Shewy

Under Supervision of

Prof. Dr. SALAH H. EL-EMAM

Dr. AHMED M. HAMED

Mech. Power Eng. Dept. Mansoura University

Mech. Power Eng. Dept. Mansoura University

1999

Q ~ . 00

Supervisors

Thesis title: Application of Absorption Cooling System for Performance Enhancement of Hurghada Gas Turbine Power Plant

Resercher name: Medhat Ahmed Mahmoud El-shewy

Supervisors:

Name	Position	Signature
Prof. Dr. Salah H. El-Emam	Prof. of Mech. Power Eng., Mansoura University	S.H.El-Eman
Dr. Ahmed M. Hamed	lecturer of Mech. Power Eng., — Mansoura University	How

ACKNOWLEDGMENTS

The author wishes to place on record his sincere gratitude to Prof.

Dr. Salah H. EI -Emam, for his great support and supervision of this thesis.

The author also expresses his sincere gratitude and indebtedness to Dr. Ahmed M. Hamed, for his guidance and continuous encouragement at every stage of this research work, which made the completion of this work possible.

The author would like to express his thanks to all persons that support and encourage him to finish this work.

ABSTRACT

Because peak electric demand for many utilities occurs in the hot summer months, a traditional combustion turbine installation is at a disadvantage summer peak operation. When a utility needs electric generating capacity most, the combustion turbine's capacity is at its lowest level. However, high atmospheric temperatures cause reductions in net power output of gas turbine power plants.

In the present work, description and analysis of the use of absorption Li-Br cooling system to enhance the performance of the Hurghada gas turbine plant through the improvement of inlet parameter are carried out. Also, an economical evaluation for the proposed system has been carried out. The plant consists of five General Electric gas turbines, each of them has a rated power of 25 MW. In the proposed system, the cooling system is activated by heat recovered from the turbine exhaust.

A computer simulation that provides calculation of the performance of the plant is presented. Monthly values of the net power output, heat rate of the plant as well as performance of the cooling system are given with the corresponding weather conditions. When ambient air is cooled to the corresponding dew point temperature, power enhancement of about 10% can be realized in June.

Results of the simulation model show that the percentage enhancement of the power depends on the weather conditions. The results of the present analysis validated the advantages of the gas turbine cogeneration with absorption air cooling.

To the second se

Results of the economical study show that a payout period of about 3.28 year is expected when absorption cooling system is applied for inlet air ir cooling purpose.

CONTENTS

	Pag
ACKNOWLEDGMENTS	No. i
ABSTRACT	
	ji
LIST OF FIGURES	vii
NOMENCLATURE	. X
CHAPTER 1. INTRODUCTION	
1.1 Introduction	1
1.1.1 Industrial heavy duty gas turbines	2
1.1.2 Medium range gas turbines	2
1.1.3 Small gas turbines	2
1.2 Gas Turbine Cycle Analysis	3
1.2.1 Brayton cycle	3
1.2.2 Actual cycle analysis	5
1.3 Performance of the Gas Turbine	7
1.3.1 Effect of combustion temperature and pressure ratio on gas turbine performance	. 7
1.3.2 Effect of inlet air cooling on the performance of the gas turbine simple cycle	9
1.3.3 Effect of inlet air cooling and pressure ratio on gas turbine performance	-10
1.4 Improvement of Gas Turbine Performance	12
1.4.1 Heat recovery steam generator (HRSG)	14
1.4.2 Regenerators	14
1.4.3 Intercooler with regenerated gas turbine	15
1.4.4 The Intercooled regenerative reheat cycle	- 15
1.5 System Options for Gas Turbine Air Cooling	15
1.5.1 Chilling system	15
1.5.2 Absorption chiller thermal source	19
1.5.3 Chilled water distribution - system	20
1.5.4 Cooling system	22
CHAPTER 2. LITERATURE REVIEW	
2.1 Previous Study	24

2.2 Gas Turbine plants in Egypt	
2.3 Scope of the Present Work	
CHAPTER 3. PROPOSED SYSTEM	•
3.1 Introduction	
3.1.1 Basic absorption system	
3.1.2 Lithium Bromide-water system	38
3.1.3 Analysis of the Lithium Bromide-water system	39 43
3.2 Climate Data of Hurghada	
3.3 Gas Turbine Plant	
3.4 Description of the Proposed System	44
3.5 Analysis of the Proposed System	46
3.6 Economic Evaluation	53
3.6.1 Investment charges or fixed charges	. 53
3.6.2 Annual operating costs	55
3.6.3 Cost of the proposed absorption cooling unit	57
CHAPTER 4. RESULTS AND DISCUSSION	
4.1 Ambient Air Cooling	63
4.2 Absorption Cycle Performance	
4.3 The Effect of Inlet Air Cooling on the Power Plant Performance	68
4.4 Economic analysis for gas turbine inlet air cooling	74
CHAPTER 5. CONCLUSIONS	75
REFERENCES	76
APPENDIX A Subprogram for calculation of the efficiency with varying of pressure ratio	79
APPENDIX B Data of the Hurghada gas turbine unit	81
APPENDIX C Performance curves of the Hurghada gas turbine unit	82
APPENDIX D Subprogram for calculation of the dew point	84
Temperature and enthalpy difference of the air	
APPENDIX E Mathematical relations of thermodynamic	86
Properties of air	

	vi	
APPENDIX	F Subprogram for calculation of the coefficient of performance of the cooling cycle	88
APPENDİX	G Main program and its flow chart	91
APPENDIX	H Measured exhaust gases temperatures and fuel flow rates at different loads	95

LIST OF FIGURES

Figure		Pages
1.1	The air – standard Brayton cycle	4
1.2	T-S diagram of the actual open simple cycle	. 8
1.3	Cycle efficiency as a function of pressure ratio for	8
	the Brayton cycle	
1.4	Effect of inlet air cooling on the efficiency of gas	- 13
	turbine with varying of the pressure ratio	
1.5	The intercooled regenerative reheat split-shaft gas	17
·	turbine cycle	
1.6	Absorption chiller schematic	17
1.7	Application of two stage (Li-Br) system for inlet air	18
	cooling	
1.8	Application of mechanical chilling for inlet air	18
	cooling	•
1.9	Hybrid chilling diagram	20
1.10	Chilled water coils	20
1.11	Indirect evaporative cooling	23
2.1	Absorption cooling unit performance	25
2.2	Simulation of the performance of the 26 MW gas	25
	turbine with and without cooling for a July work	
	week	
2.3	Gas turbine peak capacity and system peak demand	28
2.4	Effect of Inlet temperature on gas turbine	28
	performance	•

2.5	Effect of inlet temperature and pressure ratio on	31
-	LM6000 gas turbine output	
2.6	Effect of inlet temperature and pressure ratio on the	31
	net combined cycle output	
2.7	Schematic of basic desiccant precooler	33
2.8.	Steam jet refrigeration	33
3.1	The basic absorption cycle	37
3.2	Schematic of the water-Lithium bromide system	40
3.3	Thermodynamic path for the water-Lithium bromide	40
	cycle	
3.4	The Hurghada GE 25 MW gas turbine	45
3.5	Schematic diagram of gas turbine plant augmented	47
	by cooling cycle	
3.6	The generated power when air is cooled to	60
	corresponding dew point temperature and 10 °C	
4.1	Effect of relative humidity and dry bulb temperature	64
	on dew point temperature	
4.2	Effect of relative humidity and dry bulb temperature	64
	on enthalpy difference	
4.3	The effect of absorber temperature on COP at	68
	different evaporator temperatures	
4.4	The effect of generator temperature on COP with	67
	varying of absorber temperatures	
4.5	Ambient conditions of Hurghada during the year	70
4.6	Power plant performance with compressor inlet air	70
	cooling to corresponding dew point temperature	