Mutational analysis of human genes involved in Spinal Muscular Atrophy

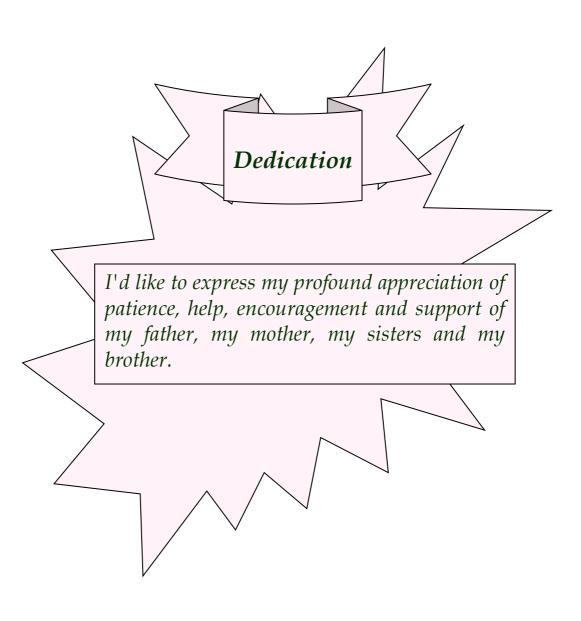
A thesis Submitted for partial fulfillment of Master degree of Science in biochemistry

By
Ghada Mahmoud Metwally Al-Ettribi
Research assistant
Medical Genetics Department
National Research center

Under the supervision of

Prof. Dr. Amr Mahmoud Karim Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Gamila Mohamed Labib Shanab Assist. Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University


Dr. Mona Lotfi Essawi Assist. Prof. of Molecular Genetics Medical Genetics Department National Research Center

Department of Biochemistry Faculty of Science Ain Shams University 2005

بسم الله الرحمن الرحيم

"فأما الزبد فيذهب بهاء و أما ما ينفع الناس فيمكث في الأرض

(سورة الرغد أيه 17)

I declare that this thesis has been composed by me and the work therein has not been submitted for a degree at this or other university.

Ghada Mahmoud Metwally Al-Ettribi

Contents

Abstract		
Acknowledgement		
List of abbreviations		
List of figures	VI	
List of tables	VII	
List of charts	X	
ntroduction and aim of work		
. Review of literature		
1.1 Clinical and molecular basis of SMA	3	
1.1.1 Definition and classification of spinal muscular		
atrophies	3	
1.1.2 History of the disease	6	
1.1.3 Epidemiology of proximal SMA	9	
1.1.4 Clinical features and phenotypic variability of		
proximal SMA	10	
1.1.5 Pathogenesis of the proximal SMA	12	
1.1.6 Molecular basis of SMA		
1.1.6.1 SMA Locus	15	
1.1.6.2 Structure and organization of SMN gene	16	
1.1.6.3 SMN transcripts and alternative splicing process	18	
1.1.6.4 SMN-protein	20	
1.2 The molecular basis of the disease	27	
1.2.1 Mutations and polymorphisms in SMN genes	27	
1.2.2 Disease mechanisms	31	
1.2.3 Genotype-phenotype correlation for SMA	33	
1.2.3.1 The relation between SMA severity and disease		
mechanisms	34	
1.2.3.2 The relation between SMA severity and SMN2		
copy number (The dosage effect of the SMN		
protein)	35	
1.2.3.3 The relation between the disease severity and the		
SMA modifying genes of SMA	39	

1.2.3.3.1 The Neuronal Apoptosis Inhibitory Protein	
(NAIP) gene	39
1.2.3.3.2 Basal Transcription Factor subunit p44	
(BTFp44) gene	40
1.2.3.3.3 H4F5 gene	41
1.2.3.3.4 Models of SMA alleles	42
1.2.4 Molecular diagnosis	44
1.2.4.1 Confirmation of the clinical diagnosis	44
1.2.4.2 Carrier testing	46
1.2.4.3 Prenatal testing	47
1.2.5 Therapeutic approaches	47
2. Subjects and Methods	53
2.1 Subjects	53
2.2 Samples	53
2.3 Reagents	53
2.3.1 Reagents used in genomic DNA extraction from	
blood	53
2.3.2 Reagents for genomic DNA extraction from	
amniocytes	54
2.3.3 Reagents for PCR	54
2.3.4 Reagents used in agarose gel electrophoresis	54
2.3.5 Reagents used in polyacrylamide gel preparation	
for SSCP analysis	55
2.3.6 Preparation of 50 ml total volume of 12% non-	
denaturing polyacrylamide gel	55
2.3.7 Reagents used in silver staining	56
2.4 Clinical Evaluation	56
2.5 Molecular Studies	57
2.5.1 Extraction of genomic DNA	57
2.5.1.1 From blood samples	57
2.5.1.2 From amniocytes in amniotic fluid	57
2.5.2 Measurement of DNA concentration and purity	58

2.5.3 Detection of the deletion of exon 5 of the NAIP	
gene	59
2.5.4 Detection of the absence of exons 7 and 8 of the	
SMN1 gene	60
2.5.4.1 Polymerase chain reaction (PCR)	60
2.5.4.2 Single Stranded Conformational Polymorphism	
(SSCP)	61
3 Results	66
3.1 Clinical Data	
3.2 Molecular Studies Results	
3.2.1 Results of blood DNA samples	74
3.2.2 Results of DNA analysis of the 2- prenatal cases	84
4. Discussion	89
Summary	106
References	109
Arabic Summary	
Arabic Abstract	

Abstract

Mutational Analysis of Human Genes Involved in Spinal Muscular Atrophy

This study aimed to determine the frequency of the homozygous absence of exons 7 and 8 of the telomeric survival of motor neuron (SMN1) gene and the deletion frequency of exon 5 of the neuronal apoptosis inhibitory protein (NAIP) gene in patients with the three different types of apinal muscular atrophy (SMA). It aimed also to assess the effectivness of the PCR-SSCP method in prenatal diagnosis of mothers at risk of SMA.

The study included 20 Egyptian SMA patients classified into 5 patients type I, 9 patients type II, and 6 patients type III. They were classified at clinical examination according to age at onset and severity of the disease. Two fetuses of 2 mothers at risk were also included in the study.

Detection of homozygous absence of exons 7 and 8 of SMN1 gene was carried out using the PCR-SSCP technique, whereas, deletion of NAIP exon 5 was detected through PCR-agarose gel electrophoresis. Homozygous absence of SMN1 exons 7 and 8, or exon 7 only, was found in 80% of patients (4/5 type I, 6/9 type II, and 6/6 type III SMA patients). NAIP exon 5 deletion was observed in 45% of patients (4/5 type I, 2/9 type II, and 3/6 type III SMA patients). One of the two fetuses included in the study was diagnosed as having SMA using the PCR-SSCP assay, while the other was diagnosed as genotypically normal. In conclusion, the frequency of homozygous absence of SMN1 exon 7 and 8, or exon 7 only, in concordance with deletion of NAIP exon 5 was higher in type I SMA than in types II and III. SSCP technique was effective in the prenatal diagnosis. Determination of the subtle mutations in the compound heterozygous patients and quantitation of the number of SMN2 copies are recommended for promoting our understanding of genotype-phenotype correlations in SMA patients.

Acknowledgement

My grateful acknowledgement for *Dr. Amr Mahmoud Karim*, Professor of Biochemistry, Biochemistry Departement, Ain Shams University, for his kind supervision, precious guidance, helpful instructions, and powerful support.

I would like to express my great thanks to *Dr. Mona Lotfi Essawi*, Assistant Professor of Molecular Genetics, Medical Molecular Genetics Department (MMGD), Human Genetics and Genome Research division (HGGRD), National Research Center (NRC), for her sincere guidance, great support, invaluable advice, and great help under her continous supervision to finish this work.

My profound and sincere thanks to *Dr. Gamila Mohamad Shanab*, Assistant Professor of Biochemistry, Biochemistry Departement, Ain Shams University, for her sincere guidance, valuable discussion, great support, abounding patience, efforts, and time she spent in reviewing the thesis.

I wish to express my deep gratitude to *Dr. Laila Kamal Al-Deen Effat*, Assistant Professor of Molecular Genetics, MMGD, HGGRD, National Research Center (NRC), for her great support, kind help, and strong encouragment.

A word of thanks to *Dr. Ashraf Al-Haroni*, Professor of Clinical Genetics and Deputy Head of DHGGR, NRC, for his help in providing us with the blood samples and in interpreting clinical data of the patients.

A word of thanks to *Dr. Khaled Gaber*, Professor and Head of Prenatal Diagnosis and Fetal Medicine Department, DHGGR, NRC, for his help in providing us with the amniotic fluid samples.

I would like to express my deep gratitude and sincere appreciation to *Dr. Yehia Zakaria Gad*, Professor of Molecular Genetics and Head of the MMGD, HGGRD, National Research Center (NRC), for his valuable guidance and kindly encouragement and support.

I would like to thank all the staff members of Medical Molecular Genetics Department, for their kind encouragement.

Finally, I can not forget to thank the patients and their family members who participated in this work, praying Allah to help all parents taking care of their diseased children and to get them happy with other healthy children.

List of abbreviations

5q13 : The long arm of chromosome 5, region 1 band 3

ADP : Adenosine diphosphate
AHCs : Anterior Horn Cells

AS-PCR : Allele Specific-Polymerase Chain Reaction

ATP : Adenosine triphosphate

BA : Sodium Butyrate

Bax : Bcl-2 associated x protein

Bcl-2 : B-cell Leukemia / Lymphoma 2

bp : base paire

BTFp44t : The telomeric Basal Transcription Factor p44
BTFp44c : The centromeric Basal Transcription Factor p44

CBs : Cajal Bodies

cDNA : complementary deoxyribonucleic acid

CK : Creatine Kinase

CNS : Central Nervous System

DEAD-box : Aspartic acid-Glutamic acid-Alanine-Aspartic acid

tetrapeptide

EMG : Electromyography

ENMC: Eropean Neuro Muscular Center

ESE : Exonic Splicing Enhancer
ESS : Exonic Splicing Silencer

ESSENCE : Exon Specific Splicing Enhancement by

Small Chimeric Effectors

FUSE binding

protein : the Far Upstream Element binding proteins

GDB: The Human Genome Data Base

hnRNPs : heterogenous nuclear ribonucleoproteins

Htra2β1 : Human Transformer 2 β1IAP : Inhibitor of Apoptosis

IRF-E : Interferone Regulatory Factor binding motifISRE : Interferone Stimulated Response Element

kb : kilobasekDa : Kilo Dalton

LMNs : Lower Motor Neurons

Lsm proteins : smith antigen-like proteins

MDa : Mega Dalton

NAIP : Neuronal Apoptosis Inhibitory Protein

NLS : Nuclear Localization Signal

OMIM : Online Mendelian Inheritance in Man

p⁵³ : Phosphoprotein 53

PCR-SSCP : Polymerase Chain Reaction - Single Stranded

Conformational Polymorphism

PFN II : Neuron specific profilin II

PNA : Peptide-Nucleic Acid PB : 4-Phenyl Butyrate

Pre-mRNA : preliminary messenger ribonucleic acid

RBD : RNA Binding Domain

RFLP: Restriction Fragment Length Polymorphism

RNA : Ribonucleic Acid

RS-domain : Argenine-Serine domain

SF2/ASF : Splicing factor Argenine-Serine rich 2/ Alternative

Splicing Factor

SIP1 : SMN Interacting Protein 1sm proteins : smith antigen core proteinsSMA : Spinal Muscular Atrophy

SMN1 or SMNt :The telomeric Survival Motor Neuron SMN2 or SMNc :The centromeric Survival Motor Neuron

smN : Neuron Specific smith antigen
 snoRNP : small nucleolar ribonucleoprotein
 snRNA : small nuclear ribonucleic acid
 snRNP : small nuclear ribonucleoprotein
 SR-proteins : Serine-Argenine rich proteins

TFIIH : Transcription Fator IIH

TOES : Targeted Oligonucleotide Enhancers of Splicing UsnRNPs : Uridine small nuclear Ribonucleoproteins

WD-repeat

protein : Tryptophan-Aspartic acid repeat protein

YG- rich box : Tyrosine-Glycine rich box ZPR1 : Zinc Finger Protein 1

ΨNAIP : Psudo Neuronal Apoptosis Inhibitory Protein

List of Figures

Fig (1):	A. Schematic representation of the SMA region on 5q13.B. Nucleotide differences between SMA1 and SMN2	15
Fig (2):	Schematic representation of SMA chromosome showing the location of the Ag-CA (C272) and C212 markers corresponding to SMN genes.	17
Fig (3):	Genetic basis of SMA	19
Fig (4):	SMN2 exon 7 skipping due to the disrupted ESE	20
Fig (5):	SMN is localized in distinct nuclear organelles of cultured motor neurons	21
Fig (6):	Domains of the SMN protein	24
Fig (7):	Schematic representation of the most frequently observed SMA chromosomes in acute SMA (type I) and mild SMA (type II/III)	34
Fig (8):	Genomic organization of the SMA locus	36
Fig (9):	Genomic organization of H4F5 relative to existing genes in SMA critical region	42
Fig (10):	Correction of defective SMN2 splicing	52
Fig (11):	SSCP-analysis indicating the difference between a wild type and a mutant PCR product based on their unique conformation.	62
Fig (12):	Agarose gel electrophoresis of amplified PCR products of exons 5 & 13 of the NAIP gene from eight SMA patients	75

Fig (13):	Agarose gel electrophoresis of amplified PCR products of exons 7 & 8 of the SMN genes from four SMA patients	76
Fig (14):	SSCP analysis of SMN genes exon 7 on 12% polyacrylamide gel	77
Fig (15):	SSCP analysis of SMN genes exon 8 on 12% polyacrylamide gel	78
Fig (16):	Agarose gel electrophoresis of the amplified products of exons 5 & 13 of the NAIP gene from two fetuses and their brothers.	85
Fig (17):	Agarose gel electrophoresis of the amplified products of exon 7 & exon 8 of the SMN genes for the 2 fetuses	86
Fig (18):	SSCP analysis of exons 7 & 8 of the SMN genes for the 2 fetuses.	87
Fig (19):	A diagrammatic representation of the mutation patterns of the twenty SMA Egyptian patients included in this study	99

List of Tables

Table (1):	Classification of SMAs according to the clinical criteria and the mode of inheritance	5
Table (2):	Classification of spinal muscular atrophies according to chromosomal location	6
Table (3):	Overview on the history of the disease	6
Table (4):	Criteria for classification of childhood SMA	10
Table (5):	Milestones in SMA research	14
Table (6):	RG-rich-domain-containing substrates of the SMN complex	23
Table (7):	Frequency of homozygous absence of the SMN1 gene found in types I, II and III SMA patients	28
Table (8):	List of small intragenic SMN1 mutations	29
Table (9):	Polymorphisms identified in both SMN1 and SMN2 genes.	32
Table (10):	Distribution of SMN2 copies in patients with SMA	37
Table (11):	Oligonucleotide primers	65
Table (12):	Clinical data of the patients	67
Table (13):	Classification of SMA patients according to type of the disease, showing the frequency of patients classified in each type	72
Table (14):	The relation between age at onset and type of the disease	72