MOLECULAR MARKERS ASSOCIATED WITH THE EXPRESSION OF PATHOGENICITY GENES OF RHIZOCTONIA SOLANI CAUSING FABA BEAN ROOT ROT

By

MAHA HELMY MOHAMED HASSAN

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2004 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2009

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHYLOSOPHY

in

Agricultural Science (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Ain Sham University

Approval Sheet

MOLECULAR MARKERS ASSOCIATED WITH THE EXPRESSION OF PATHOGENICITY GENES OF RHIZOCTONIA SOLANI CAUSING FABA BEAN ROOT ROT

By

MAHA HELMY MOHAMED HASSAN

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2004 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2009

This thesis for Ph.D. degree has been approved by:

Dr	. Marzouk Ragab Abdel-Latif
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Minia University
Dr.	. Magdy Gad El-Rab Mohamed El-Samman
	Prof. of Plant Pathology, Faculty of Agriculture, Ain Shams University
Dr	Samir Hassan Mahmoud El-Deeb
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University
Dr	. Mostafa Helmy Mostafa Mohamed
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University

Date of Examination: 22 / 4 / 2015

MOLECULAR MARKERS ASSOCIATED WITH THE EXPRESSION OF PATHOGENICITY GENES OF RHIZOCTONIA SOLANI CAUSING FABA BEAN ROOT ROT

By

MAHA HELMY MOHAMED HASSAN

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2004 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2009

Under the supervision of:

Dr. Mostafa Helmy Mostafa Mohamed

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Samir Hassan Mahmoud El-Deeb

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Maha Helmy Mohamed Hassan: Molecular Markers Associated with the Expression of Pathogenicity Genes of *Rhizoctonia solani* Causing Faba Bean Root Rot. Unpublished Ph.D. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2015.

The present study was carried out to identify the most important genes that up regulate in *Rhizoctonia solani* during pathogenesis in order to find a new approach to control *Rhizoctonia* disease on faba bean.

One hundred and thirty one isolates of *Rhizoctonia* spp. were isolated of faba bean plants infected with root-rot and stem canker collected from different plant ages from different locations.

According to morphological features of *Rhizoctonia* isolates, all isolates were divided into twelve groups. Twenty one isolates from the different groups were randomly chosen for pathogenicity test procedure. The most aggressive isolate belong to polynucleate *Rhizoctonia* was identified as *Rhizoctonia solani* AG4-HGI by using specific primers of ITS regions of rDNA.

Anastomosis test was carried out between accurately identified isolate and eleven isolates belong to polynucleate groups. All aforementioned isolates were perfectly fused with each other. This result indicated that the eleven chosen isolates are belonging to the same anastomosis group *i.e.* AG4-HGI.

The obtained results clarified that the fungus feels the presence of the host by entity the moisture around the fungus or by heat emitted from the host, evaporate substances of the host plant or by all of these factors. The most noticed morphological deviations from the normal state by scanning electron microscope (SEM) are swelling the hyphae beneath the host which was observed twenty four hour after exposing the fungus to the peeled seeds, followed by formation of mycelial threads which grow toward the host forming infection cushions.

Peeled faba bean germinated seeds were coated by gum Arabic and subjected to the pathogen in a distance 6 mm in Petri dishes or by sown in plastic pots contained infested sand with the pathogen. The result obtained indicated that coated seeds with gum Arabic significantly reduced of disease index and positively reflected on all plant growth characters compared with non-coated seeds.

Starvation of *R. solani* leads to significantly increase of its aggressiveness *in vitro* test. Disease index was significantly reduced when amended soil with three different organic fertilizers in presence of fungal inoculum and positively reflected on all plant growth characters than those plants produced in non-amended soil.

Canker symptom -in fact- is a type of resistance response, due to increase the activity of PPO and the positive test of NBT in infected tissues. Isozymes pattern of SOD showed clear variability of visible bands between treatments.

Increase of nitrogen levels lead to significantly increasing the disease index as well as increasing the activity of both SOD and CAT. Potassium phosphate and calcium chloride significantly reduced of the disease index, reduced activity of both SOD and CAT, and positively reflected on all plant growth characters. The highest correlation coefficient between the disease index and the activity of both SOD and CAT emphases that these enzymes are important factors in *R. solani* pathogenicity.

Keywords:

Faba bean, Root rot, *Rhizoctonia solani*, Molecular markers, Pathogenicity genes, Superoxide dismutase (SOD), Catalase (CAT), Organic fertilizers, Sodium nitrate, Phosphate potassium, Calcium chloride, gum Arabic.

ACKNOWLEDGMENT

First of all, great thanks and praises be to Allah, who guide me to accomplish this work and assist me in all my life.

I would like to express my deepest gratitude to my supervisors **Prof. Dr. Mostafa Helmy Mostafa**, Professor emeritus of Plant Pathology,
Faculty of Agriculture, Ain Shams University and **Prof. Dr. Samir Hassan Mahmoud El-Deeb** Professor emeritus of Plant Pathology,
Faculty of Agriculture, Ain Shams University, for their supervising, for their tireless guidance, encouragement throughout this study, assistance in preparation of this manuscript, and for valuable facilities provided to manage this study. I am also indebted to them for their helping me in this work.

I am extremely grateful to **Prof. Dr. Emad El-Dein Ali Gado**, Professor of Plant Pathology, Faculty of Agriculture, Ain Shams University, who helped me at the beginning of registration, he supported me and gave me a valuable advice, and I also sincerely thank for his supervision.

Many thanks to **Prof. Dr. Fawzy Abo El-Abass**, Professor emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University, for facilitating supply organic fertilizer to manage this study.

Thanks are also extended to all staff members at Plant Pathology Department, Faculty of Agriculture, Ain Shams University, for their valuable help and encouragement.

CONTENTS

	Page
LIST OF TABLES	VII
LIST OF FIGURES	XI
LIST OF ABBREVIATION	XIX
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. Damping-off and root rot disease	3
2. The causal organism	3
3. Identification of <i>Rhizoctonia solani</i> (Kühn)	5
3.1. Characterization of <i>R. solani</i>	5
3.1.1. Anamorphic stage of <i>R. solani</i>	5
3.1.2. Holomorphic stage of <i>Rhizoctonia solani</i>	6
3.1.3. Nuclei	7
3.2. Molecular identification	8
3.2.1. Phylogenetic analysis using ribosomal DNA sequences	8
4. Hyphal fusion (anastomosis)	9
5. Pathogenicity genes	11
5.1. Infection structures	12
5.2. Melanization	13
6. Infection process of Rhizoctonia solani	14
7. Microscopically studies	15
8. Organic amendments	16
9. Nutritional salts regulates virulence and/or plant defense	17
9.1. Nitrogen	18
9.2. Phosphors	18
9.3. Calcium	19
10. Oxygen radicals and their scavengers	20
10.1. Superoxide Dismutase	22
10.2. Catalase	23
10.3 Polyphenol oxidase	24

III. MATERIALS AND METHODS	26
1. Isolation of <i>Rhizoctonia</i> spp. from diseased faba bean plants	26
2. Identification of isolated Rhizoctonia on the bases of	
morphological features	27
3. Pathogenicity test	28
3.1. Disease assessment.	29
4. Identification on molecular level	29
4.1. DNA extraction	29
4.2. Polymerase chain reaction for nucleotide sequencing	30
4.3. Sequencing and ITS sequence analysis	30
4.4. Phylogenitic analyses	30
5. Anastomosis test	30
6. Diffusion of the host plant signals and the fungus behavior	
when sense its host	31
6.1. Vertically attract	31
6.2. Horizontally attract	31
7. Scanning electron microscopy	32
8. Obstruction of host plant signals	32
8.1. <i>In vitro</i>	32
8.1.1. Effect of coating seeds with gum Arabic on disease	
index	32
8.1.2. Effect of gum Arabic on growth rate of Rhizoctonia	
solani	33
8.2. Under greenhouse conditions	33
8.2.1. Effect of coating seeds with gum Arabic on Rhizoctonia	
root rot disease	33
8.2.1.1. Preparation of fungal inoculum	33
8.2.1.2. Infestation of sand culture and cultivation of seeds	33
8.2.1.3. Determination of disease index and plant growth	
characters	34
9. Effect of <i>R. solani</i> nutrition on its aggressiveness	36
9.1. Effect of starvation of <i>R. solani in vitro</i>	36

9.1.1. Determination of polyphenol oxidase activity	36
9.2. Effect of nutrient supply with organic fertilizer on R. solani	
under greenhouse conditions	36
9.2.1. Preparation of <i>R. solani</i> inoculums and soil infestation	36
9.2.2. Soil treatments with different fertilizers and cultivation of	
seeds	37
9.2.3. Determination of disease index and plant growth	
characters	38
10. The physiological nature of Rhizoctonia solani cankers on	
faba bean plants	38
11. Molecular and physiological distinguishing signs associated	
with Rhizoctonia disease	38
11.1. Extraction of crude enzymes	39
11.1.1. Superoxide dismutase activity assay	39
11.1.2. Catalase activity assay	40
11.1.3. Protein standard curve	40
11.1.4. Isozymes pattern of superoxide dismutase	40
11.1.4.1. Reagents (stock solutions)	40
11.1.4.2. Electrophoretic buffer solution	41
11.1.4.3. Running conditions	41
11.1.4.4. Gel staining and isozymes visualization	42
12. Effect of nutritional salts on <i>Rhizoctonia</i> aggressiveness	42
12.1. In vitro study	42
12.1.1. Effect of sodium nitrate level on R. solani	
aggressiveness	42
12.1.1.1. Light microscopy.	43
12.1.1.2. Effect of sodium nitrate level on superoxide dismutase	
and catalase activities	43
12.1.2. Effect of potassium phosphate level on R. solani	
aggressiveness	43
12.1.2.1. Effect of potassium phosphate level on superoxide	
dismutase and catalase activities	44

12.1.3. Effect of calcium chloride on <i>R. solani</i> aggressiveness	44
12.2. Greenhouse study	45
12.2.1. Effect of sodium nitrate or/di-potassium phosphate levels	
on Rhizoctonia solani aggressiveness	45
12.2.2. Effect of calcium chloride on aggressiveness of	
Rhizoctonia solani	45
13. Statistical analysis.	45
IV. RESULTS	46
1. Sources and isolation of <i>Rhizoctonia</i> spp. from diseased faba	
bean plants	46
2. Identification on the bases of morphological features	46
3. Pathogenicity test	57
	60
5. Anastomosis test	63
6. Diffusion of the host plant signals and the fungus behavior	
when sense its host	65
7. Scanning electron microscopy	67
8. Obstruction of host plant signals	71
8.1. In vitro	71
8.1.1. Effect of coating seeds with gum Arabic on disease	
index	71
8.1.2. Effect of gum Arabic on growth rate of Rhizoctonia	
solani	72
8.2. Under greenhouse conditions	73
8.2.1. Effect of coating seeds with gum Arabic on Rhizoctonia	
root rot disease	73
9. Effect of <i>R. solani</i> nutrition on its aggressiveness	77
9.1. Effect of starvation of <i>R. solani in vitro</i>	77
9.2. Effect of nutrient supply with organic fertilizer on R. solani	
under greenhouse conditions	79
10. The physiological nature of Rhizoctonia solani cankers on	
faba bean plants	84

11. Molecular and physiological distinguishing signs associated	
with Rhizoctonia disease	85
11.1. Superoxide dismutase and catalase activities in peeled	
germinated seeds	85
11.2. Superoxide dismutase and catalase activities in R. solani	
mycelial mats subjected or not to the peeled seeds	87
11.3. Superoxide dismutase and catalase activities in fungal	
cultural filtrate	87
11.4. Isozyme pattern of superoxide dismutase	88
12. Effect of nutritional salts on <i>Rhizoctonia</i> aggressiveness	89
12.1. Effect of sodium nitrate level on R. solani aggressiveness	
in vitro	89
12.1.1. Light microscopy	91
12.1.1.1 Penetration processes	91
12.1.1.2. Post-penetration processes	91
12.1.2. Effect of sodium nitrate level on superoxide dismutase	
and catalase activities	94
12.1.2.1. In seeds	94
12.1.2.2. In fungal mats	95
12.1.2.3. In fungal cultural filtrates	96
12.1.3. Effect of sodium nitrate level on <i>R. solani</i> aggressiveness	
under greenhouse conditions	97
12.2. Effect of potassium phosphate level on <i>R. solani</i>	
aggressiveness in vitro	10
12.2.1. Effect of potassium phosphate level on superoxide	
dismutase and catalase activities	10
12.2.1.1. In seeds	10
12.2.1.2. In fungal mats	10
12.2.1.3. In fungal cultural filtrates	10
12.2.2. Effect of potassium phosphate level on R. solani	
aggressiveness under greenhouse conditions	10
12.3. Effect of calcium chloride on <i>R. solani</i> aggressiveness in	