IMPACT OF USING SOME BINDING MATERIALS TO REDUCE NEGATIVE EFFECTS OF MYCOTOXINS IN LACTATING ANIMAL DIETS

BY

GOUDA ABD EL-HALEAM GOUDA

B.Sc. Agric. Sc. (Animal and Poultry production), Alex. Univ., 2003 M.Sc. Agric. Sc. (Animal nutrition), Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

2017

Approval Sheet

IMPACT OF USING SOME BINDING MATERIALS TO REDUCE NEGATIVE EFFECTS OF MYCOTOXINS IN LACTATING ANIMAL DIETS

BY

GOUDA ABD EL-HALEAM GOUDA

B.Sc. Agric. Sc. (Animal and Poultry production), Alex. Univ., 2003 M.Sc. Agric. Sc. (Animal nutrition), Ain Shams University, 2009

This thesis for Ph.D. degree has been approved by:

Dr. Mounir Mahmoud El Adawy Professor Emeritus of Animal Nutrition, Faculty of Agriculture, Alexandria University (Shatby)
Dr. Hany Mahmoud Gado Professor Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University
Dr. Hamdy Mohammed El-Sayed Professor Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University
Dr. Hamdy Mohammed Khattab Professor Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University
Date of Examination: 12/2/2017

IMPACT OF USING SOME BINDING MATERIALS TO REDUCE NEGATIVE EFFECTS OF MYCOTOXINS IN LACTATING ANIMAL DIETS

BY

GOUDA ABD EL-HALEAM GOUDA

B.Sc. Agric. Sc. (Animal and Poultry production), Alex. Univ., 2003 M.Sc. Agric. Sc. (Animal nutrition), Ain Shams University, 2009

Under the supervision of:

Dr. Hamdy M. Khattab

Professor Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Hamdy M. El-Sayed

Professor Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Salah A. H. Abo El-Nor

Researcher Professor of Milk Production, Department of Dairy Science, National Research Centre

ABSTRACT

Gouda Abd El-Haleam Gouda. Impact of Using Some Binding Materials to Reduce Negative Effects of Mycotoxins in Lactating Animal Diets. Unpublished Ph.D. Thesis Dissertation, Dept. of Animal Production, Fac. Of Agric., Ain Shams Univ., 2016.

In vitro, Four concentrations of each of four types of sorbent sodium calcium aluminosilicates materials; (hydrated (HSCAS), bentonite, montmorillonite and zeolite) (i.e., 5, I0, 20 and 40 mg/ml) were individually weighted into glass tubes (three replicates per sample) and the amount of aflatoxin B₁ (AFB₁) (0.5, 10 and 50 ppb) in aqueous solution were separately added. Also, two concentrations of each of two types of clay minerals (bentonite and montmorillonite) (i.e., I0 and 20 mg/ml) were individually weighted into glass tubes (three replicates per sample) and the amount of zearalenone (ZEN) (0.5 and 50 ppm) in aqueous solution were separately added. In vivo, fifteen lactating crossed (Nubian x Baladi) goats of about 2-2.5 years old with an average body weight of about 19-21 kg in the first week of lactation were used in the The animals were randomly assigned among three presented study. experimental treatments (five animals each) using repeated measurement design. The whole feeding period of this trial was 90 days divided into three experimental periods each of 30 days. Each period consisted of 27 days preliminary period followed by a period of 3 days for collection of the experimental samples. Animals were fed three experimental treatments: Control: 60% concentrate feed mixture (CFM) + 40% berseem hay. Bentonite: 60% concentrate feed mixture (CFM) + 40% berseem hay + 2% Bentonite clay as a percentage from concentrates. Montmorillonite: 60% concentrate feed mixture (CFM) + 40% berseem hay + 2% Montmorillonite clay as a percentage from concentrates.

In vitro results indicated that HSCAS showed the best results to adsorb AFB1 in aqueous solution typical to the results reported in the literature. Both Egyptian montmorillonite (EM) and Egyptian bentonite

(EB) had a high affinity to adsorb aflatoxin B₁ or zearalenone in vitro followed to HSCAS. These results revealed that these binding agents are promise candidates to be used in the chemoprevention against AFB₁ and ZEN in the contaminated animal feed when use at a dose as low as 2% (w/w). In vivo results showed that there were significant increase ($P \le 0.05$) of DMI by using bentonite than the control group, while in montmorillonite group the dry matter intake (DMI) increased insignificantly (P>0.05) than control and there were no significance (P>0.05) between bentonite and montmorillonite groups in DMI. For the other nutrients; organic matter intake (OMI), crude protein intake (CPI), crude fiber intake (CFI), ether extract intake (EEI), nitrogen free extract intake (NFEI), neutral detergent fiber intake (NDFI) and acid detergent fiber intake (ADFI); individually, there were no significant differences (P>0.05) among groups. There were significant increase (P \leq 0.05) of the digestibility of DM, OM, CP, CF, EE, NFE and NDF by using montmorillonite than bentonite than control group, respectively. However, the digestibility of ADF increased significantly ($P \le 0.05$) using montmorillonite than control and insignificantly (P>0.05) neither between bentonite and control nor between bentonite and montmorillonite groups. Bentonite treatment had no significant effects (P>0.05) on total digestible nutrients (TDN), digestible energy (DE), metabolizable energy (ME) or the net energy required for lactation (NE_L) but montmorillonite treatment recorded the highest values ($P \le 0.05$) compared with other groups. Treatments increased digestible crude protein (DCP) significantly $(P \le 0.05)$ than control by 1.48 and 4.74 % for bentonite montmorillonite treatments, respectively. Feed efficiency (energy corrected milk (ECM)/DMI) was higher in montmorillonite supplemented group and lower in bentonite supplemented group compared to the control one.

Bentonite ration recorded the highest concentration of ruminal ammonia-N followed by control ration whereas montmorillonite ration recorded the lowest concentration ($P \le 0.05$). The treatment rations

recorded higher ($P \le 0.05$) content of total nitrogen (TN) than control ration. Control ration recorded the highest total volatile fatty acids (TVFA's) concentration ($P \le 0.05$) followed by montmorillonite and then bentonite at zero time. While, at 3 hrs. post feeding and 6 hrs. post feeding montmorillonite ration recorded the highest concentration ($P \le 0.05$) followed with bentonite then control. The respective values of rumen pH were 6.86, 7.13 and 6.48 for Control, bentonite and montmorillonite, respectively at zero time. The control groups recorded higher concentrations of AFB₁ than the treatment groups with significant differences ($P \le 0.05$). Differences were not significant (P > 0.05) between the bentonite and montmorillonite groups. The bentonite group recorded lowest concentrations ($P \le 0.05$) of ZEN compared to others. Differences between montmorillonite and control group were not significant (P > 0.05).

There were no negative effects of these additives on blood parameters (total protein, albumin, globulin, albumin: globulin ratio (A/G ratio), transaminases (AST, ALT), urea, creatinine, glucose, triglycerides, cholesterol and blood minerals (calcium, sodium, and potassium)). Montmorillonite or bentonite had beneficial effects on milk yield, energy corrected milk (ECM), total solids, fat, solids not fat, total protein, lactose and ash contents. The concentrations of aflatoxin M_1 (AFM₁) in milk at the beginning of the experiment (M0) were higher than the maximum permissible limits in milk of all animals. The concentration of AFM₁ in bentonite group has been decreased from 0.080 to 0.063 μ g/L in M1 and 0.010 μ g/L in M2 and not detected in M3. However, AFM₁ not detected in the group of montmorillonite after one month of treatment (M1). AFM₁ in control group has been increased gradually with time and recorded as 0.073, 0.116 and 0.157 μ g/L at M1, M2 and M3 respectively. ZEN not detected in milk of all treatment groups even in control group.

In conclusion, the results of the *in vitro* study indicated that HSCAS showed the best results to adsorb AFB1 in aqueous solution typical to the results reported in the literature. Both EM and EB had a

high affinity to adsorb aflatoxin B_1 or zearalenone in vitro followed to HSCAS. These results revealed that these binding agents are promise candidates to be used in the chemoprevention against AFB₁ and ZEN in the contaminated animal feed when use at a dose as low as 2% (w/w). The *in vivo* evaluation of adding bentonite and montmorillonite at 2% of concentrates in lactating goats ration on the performance, rumen parameters, plasma blood chemistry or mycotoxin excretion in milk. It could be concluded that the addition of bentonite or montmorillonite to the ration had beneficial effects on the productive performance, no negative effects on rumen parameters or blood chemistry and significant reduction in AFB₁ excretion in milk of lactating goats under the field condition in Egypt.

Key words:

Aflatoxin B₁; zearalenone; montmorillonite; bentonite; HSCAS; zeolite; sorbent materials, lactating goats, nutrient digestibility, rumen parameters, blood plasma, milk production.

ACKNOWLEDGMENT

First and foremost, all praise to Allah. The Magnificent, the merciful, without whose bless and guidance this work would never have been started nor completed. I praise him as much as the heavens and earth and what are in between or behind.

I would like to express his sincere grateful and appreciation to the supervisor of the present work, **Prof. Dr. Hamdy M. Khattab** Professor Emeritus of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University, for proposing the point of research, for his kind care during the progress and finishing of this work.

Deepest thanks are also extended to **Prof. Dr. Hamdy M. El-Sayed,** Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University, for his counsel, supervision and great help in the practical work and provision of facilities.

My sincere thanks to **Prof. Dr. Salah A. H. Abo El-Nor**, Professor of Milk Production, Department of Dairy Science, National Research Centre, for his valuable guidance, supervision and great help in the practical work and provision of facilities.

Deepest thanks are also extended to **Prof. Dr. Mossad A. Abdel-Wahhab**, Professor of Food Toxicology and Contaminants Department, National Research Centre, for his counsel and great help in the laboratory work and provision of facilities. My sincere thanks to **Prof. Dr. Sobhy M. Kholif**, Professor of Milk Production, Department of Dairy Science, National Research Centre, for his valuable guidance.

Many thanks are also due to my family father, mother and brother. I can't forget my wife and sons. I would like to take this opportunity to express my warm appreciation to all those who have participated in this work including who have commented on and pointed out errors in the original manuscript and to anybody helped me throughout this work.

LIST OF CONTENTS

CONTENTS	Pages
LIST OF ABBREVIATIONS	V
LIST OF TABLES	X
LIST OF FIGURES	XV
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Mycotoxins problems	3 3 3
2.1.1. Chemical and biological nature	3
2.1.2. Physical signs	4
2.1.3. Mycotoxins effects on animals	4
2.1.4. Mycotoxins effects on humans	5
2.1.5. Risk assessment of mycotoxins	6
2.1.6. Geographical interference	7
2.2. Most common mycotoxins	9
2.2.1. Aflatoxins	9
2.2.1.1. Aflatoxins in ruminants	14
2.2.1.2. Aflatoxins in mono gastric	17
2.2.2. Zearalenone	19
2.2.2.1. Zearalenone in ruminants	20
2.2.2.2. Zearalenone in mono gastric	20
2.2.3. Other mycotoxins with significant health effects	22
2.3. Strategies for mycotoxins control	24
2.3.1. Actions to be taken before, during and after harvest	25
2.3.2. Disposal of mycotoxin contaminated grain	27
2.3.3. Biological control	27
2.3.4. Physical and Chemical control	29
2.3.5. Natural products	29
2.3.5.1. Plant extractions	30
2.3.5.2. Vitamins	30
2.3.5.3. Clays (Sorbent materials)	30
2.3.5.3.1. Composition of clays	31
2.3.5.3.1.1. Bentonites	32
2.3.5.3.1.2. Montmorillonites	32
2.3.5.3.1.3. Zeolite	33
2.3.5.3.1.4. HSCAS (Hydrated sodium calcium	
aluminosilicate)	33

2.3.5.3.2. Natural properties of clays	33
2.3.5.3.2.1. Adsorption properties	33
2.3.5.3.2.2. Cation-exchange and buffering properties	34
2.3.5.3.2.3. Clays as a pelleting aid (binding properties)	35
2.4. Clay supplementation in ruminant rations	35
2.4.1. Clays and urea toxicity	36
2.5. Mechanisms of action of clay minerals as mycotoxins	
adsorbing agents	37
2.6. Use of sorbent materials in farm animal's nutrition	38
2.6.1. Enhancement of digestibility coefficients	39
2.6.2. Effect of natural clays on blood parameters	40
2.6.2.1. Minerals concentration	40
2.6.2.2. Urea-N	41
2.6.2.3. Glucose	42
2.6.2.4. Other blood parameters	42
2.6.3. Effect of natural clays on milk production and	
composition	42
2.6.4. Sorbent materials reduce AFM1 in milk	43
2.7. Efficacy of sorbent materials on mycotoxins	45
2.7.1. Aflatoxins sorbent materials	45
2.7.1.1. Hydrated sodium calcium aluminosilicate	
(HSCAS)	45
2.7.1.2. Montmorillonites and Bentonites	46
2.7.1.3. Zeolites	47
2.7.2. Sorbent materials and Zearalenone	47
2.8. General benefits and critical points of sorbent	
materials	49
2.8.1. Benefits related to the reduction of mycotoxins	
contamination	49
2.8.2. Critical points	51
MATERIALS AND METHODS	53
3.1. Sorbents and mycotoxin standards	53
3.2. Survey (Determination of AFB1 and ZEN in corn to	
determine the possibility of contamination in feeds)	54
3.2.1. Determination of AFB1	54
3.2.2. Zearalenone	55
3.3. In-vitro study	56
3.3.1. Adsorption of clay minerals to AFB1	56
3.3.2. Adsorption of clay minerals to Zearalenone	56

3.4. In-vivo study	57
3.4.1. Preparation of clay supplemented diets	57
3.4.2. Experimental design	59
3.4.3. Digestibility trials	59
3.4.4. Sampling of rumen liquor	60
3.4.5. Sampling of blood	60
3.4.6. Sampling of milk	60
3.5. Methods of analysis	61
3.5.1. Feeds and feces analysis	61
3.5.2. Rumen liquor analysis	61
3.5.3. Blood plasma analysis	61
3.5.4. Milk analysis	62
3.5.5. Statistical analyses	63
RESULTS AND DISCUSSION	64
4.1. Survey trial	64
4.2. In vitro trial	65
4.2.1. Aflatoxin B ₁ AFB ₁	65
4.2.2. Zearalenone (ZEN)	77
4.3. In vivo trial	81
4.3.1. Effect of treatments on nutrient intake (g/h/d) and	
nutrient digestion coefficients of lactating goats	81
4.3.2. Effect of treatments on nutritive value and feed	
efficiency of lactating goats	84
4.3.3. Mycotoxins in feces	86
4.3.3.1. Aflatoxin B1 (AFB1)	86
4.3.3.2. Zearalenone (ZEN)	88
4.3.4. Effect of treatments on rumen liquor parameters	89
4.3.4.1. Ammonia nitrogen	89
4.3.4.2. Total nitrogen	91
4.3.4.3. Total volatile fatty acids	91
4.3.4.4. Rumen pH	93
4.3.4.5. Mycotoxins	95
$4.3.4.5.1.$ Aflatoxin B_1 (AFB ₁)	95
4.3.4.5.2. Zearalenone (ZEN)	101
4.3.5. Effect of treatments on blood plasma parameters	106
4.3.5.1. Total protein	106
4.3.5.2. Albumin	106
4.3.5.3. Globulin	108
4.3.5.4. Albumin: Globulin (A/G ratio)	110

4.3.5.5. Urea N	110
4.3.5.6. Creatinine	113
4.3.5.7. Aspartate aminotransferase (AST)	115
4.3.5.8. Alanine aminotransferase (ALT)	116
4.3.5.9. Glucose	118
4.3.5.10. Triglycerides	119
4.3.5.11. Cholesterol	121
4.3.5.12. Calcium (Ca)	122
4.3.5.13. Sodium (Na)	124
4.3.5.14. Potassium (K)	124
4.3.6. Effect of treatments on milk production and	
composition	128
4.3.6.1. Milk yield	128
4.3.6.2. Energy corrected milk yield (ECM)	130
4.3.6.3. Fat	131
4.3.6.4. Total solids	134
4.3.6.5. Solids not fat	137
4.2.6.6. Total protein	139
4.2.6.7. Lactose	142
4.2.6.8. Ash	145
4.2.6.9. Milk energy	148
4.2.6.10. Milk energy output	149
4.2.6.12. Mycotoxins	153
$4.2.6.12.1.$ Aflatoxin M_1 (AFM ₁)	153
4.2.6.12.2. Zearalenone (ZEN)	155
SUMMARY AND CONCLUSION	156
REFERENCES	162
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

Abbreviation Mean

μg Microgram

ACN Acetonitrile

ADF Acid detergent fiber

AFB₁ Aflatoxin B₁

AFB₂ Aflatoxin B₂

 AFG_1 Aflatoxin G_1

AFG₂ Aflatoxin G₂

 AFM_1 Aflatoxin M_1

AFM₂ Aflatoxin M_2

AFs Aflatoxins

ALT Alanine aminotransferase

AST Aspartate aminotransferase

ATA Alimentary Toxic Aleukia

CAST Council for Agricultural Science and Technology

CDC Centers for Disease Control and Prevention

CF Crude fiber

CFM Concentrate feed mixture

CH₂Cl₂ Di-Chloro methane

CHCL₃ Chloroform

CP Crude protein

Da Dalton (formerly atomic mass unit)

DCP Digestible crude protein

DE Digestible energy

DM Dry matter

DMI Dry matter intake

DNA Deoxi Ribo Nucleic Acid

DON Deoxynivelenol

EB Egyptian bentonite

EC European Commission

ECM Energy corrected milk

EDTA Ethylene Diamine Tetra-Acetic acid

EE Ether extract

EFSA European Food Safety Authority

ELISA Enzme linked immunosorbent assays

EM Egyptian montmorillonite

ERs Estrogen receptors

FAO Food and Agriculture Organization of the United Nations

FB₁ Fumonisin B₁

FCM Fat corrected milk

FDA Food and Drug Administration

FEEDAP Panel on Additives and Products or Substances used in

animal feed

FSA Food Standards Agency

GOT Glutamic oxalo acetic transaminase

GPT Glutamic pyruvic transaminase

Hb Hemoglobin

Hct Hematocrit

HPLC High Performance Liquid Chromatograghy

HSCAS Hydrated Sodium Calcium Alumino Silicates

IARC International Agency for Research on Cancer

kg Kilogram

LDH Lactic dehydrogenase

MCHC Mean corpuscular hemoglobin concentration

ME Metabolizable energy

MeOH Methanole

mg Milligram

MMN Modified montmorillonite nano- composite

MOS Mannan oligosaccharides

mRNA Messenger Ribo Nucleic Acid

Na₂SO₄ Sodium Sulfate

NaCl Sodium chloride

NaOH Sodium Hydroxide

NDF Neutral detergent fiber

NE_L The net energy required for lactation

NFE Nitrogen free extract