

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

GEOPHYSICAL LABORATORY STUDY OF THE DEPOSITS OF THE BLACK SANDS OF ABU KHASHABA BEACH, ROSETTA DISTRICT, EGYPT.

A THESIS SUBMITTED TO THE GEOPHYSICS DEPARTMENT, FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED GEOPHYSICS

BY

RAGAA ABDELGAWAD MAHMOUD ELSAYED

(B. Sc. in Geology) Geophysicist, Nuclear Materials Authority, Cairo, Eygypt

SUPERVISORS

Prof. Dr. Atmed M. Sabri Head of Geophysics Department, Faculty of Science, Ain Shams University

Hamdy S. Sadek

Prof. Dr. Hamdy S. Sadek Prof. of Applied Geophysics, Exploration Division, Nuclear Materials Authority, Cairo, Egypt. Dr. Abouelhoda M. Elsirafy
Assistant Prof. of Applied Geophysics,
Exploration Division,
Nuclear Materials Authority,
Cairo, Egypt.

1996

BUNTU

John Marie M

PREFACE

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of Master of Science in Geophysics.

Beside the research work presented in this thesis, the candidate attended ten post graduate courses for one academic year in the following topics:-

- 1- Field geology and geologic maps.
- 2- Statistical geology and computer.
- 3- Potential theory.
- 4- Electric methods.
- 5- Magnetic methods.
- 6- Gravimetric methods.
- 7- Basement complex.
- 8- Middle east basins.
- 9- Structural geology.
- 10- Geotectonics.

She has successfully passed the final examination of these courses, besides an English language course.

Approved

Prof. Dr. Ahmed M. Sabri

Head of Geophysics Department,
Faculty of Science,
Ain Shams University.

1

ź,

'n

111

111

35

97

12:1

\$10

3

ABSTRACT

The present research work is considered as a part of the Nuclear Materials Authority comprehensive exploration and assessment program of the Egyptian black sands. This work deals essentially with the study of some physical properties of the black-sand deposits using geophysical laboratory methods. These methods included the electromagnetic conductivity, magnetic susceptibility and gamma-ray spectrometry. This work aims mainly to define the most efficient geophysical technique that can be used to explore these deposits in the field. It aims also to establish a set of standard curves that can provide a reliable quantitative tool to determine the total heavy mineral content of unknown black-sand samples from their measured geophysical responses.

The various laboratory geophysical measurements were carried out on 416 samples represent the black-sand deposits of Abu Khashaba area (located in the extreme northwestern corner of the Nile Delta). Among these samples, 272 represent the surficial deposits, and collected from a total surface area of 2.4 km². The remaining 144 samples represent the subsurface deposits, and collected from the exploratory drilled boreholes in the area, with maximum depth of 10 m. Results of the different measurements have been presented in the form of contour maps and subjected to conventional statistical methods of analysis to facilitate and enhance their interpretation.

Qualitative interpretation of the various contour maps and results of statistical analysis of the data indicated that the black-sand deposits in the studied area are distributive in a pattern of repetitional zones of high and low heavy mineral content; striking approximately in the east-west direction, more or less parallel to the present shore line.

The study indicated that the surficial black-sand deposits represent one considerable layer of high productivity with respect to the underlying deposits. This should be taken into consideration when planning for the assessment of the mineral potentiality of these deposits. The surficial deposits displayed

statistically significant anomalous areas of potential high heavy mineral content, that are largely occurred in the northwestern part of the studied area.

Application of the principal component analysis on the different geophysical measurements indicated that, about 83 % of the differences between the black-sand deposits are related to heavy mineral concentration differences, whereas about only 13 % of these differences are related to light mineral concentration differences. Interpretation of the various geophysical responses of the black-sands demonstrated that the magnetic minerals behave the same manner as the radioactive minerals.

Four standard curves were established to show the relationship between the measured electromagnetic conductivity, magnetic susceptibility and concentrations of the two radioelements thorium and uranium versus the total heavy mineral contents in 21 standard sample of total heavy mineral contents range from 0 to 100%. These standard curves were provide a reliable approach for semi-quantitative determination of the total heavy mineral contents of unknown black-sand samples. These characteristic curves demonstrated also that the magnetic and spectrometric methods are capable to detect both low- and high-grade black-sand deposits. Consequently, the two methods are highly recommended for exploring these deposits. The electromagnetic conductivity method was found to be ineffective tool in the case of low-grad deposits (less than 22 % total heavy mineral content).

Statistical treatments of the collected spectral radiometric measurements indicated that, the mean background terrestrial gamma-radiation level is about 11.4 uR/h. Gamma-radiation dose received by people in the area due to this natural exposure was computed as 95 millirems/year. This value remains within the maximum permissible limit without harm to the individual. Periodical systematic radiometric measurements are highly recommended to evaluate the actual dose rate received by people in the area of Abu Khashaba beach and to determine the amount and extent of any future variations in the environmental radioactivity level in this area of Egypt.

ACKNOWLEDGMENTS

FIRST OF ALL, MY DEEP THANKS ARE DUE TO ALLAH

Grateful acknowledgment is due to Prof. Dr. Ahmed M. Sabri, Head of Geophysics Department, Faculty of Science, Ain Shams University, for his supervision, encouragement and fruitful suggestions during this research work. Thanks are also due to Prof. Dr. Hamdy S. Sadek, Prof. of Applied Geophysics, Exploration Division, Nuclear Materials Authority (NMA), Egypt, for his supervision and encouragement. My deep gratitude and thanks are due to Dr. Abouelhoda M. Elsirafi, Assistant Prof. of Applied Geophysics and Head of Dep. of Airborne Geophysics, Exploration Division, NMA, Egypt, for his supervision and his great help, critically reviewing the manuscript and encouragement during the various phases of this research work.

Grateful acknowledgment is due to Prof. Dr. Nabil M. Elhazeik, President of NMA, Egypt, for excellent facilities offered to carry out this research work. Deep appreciation is due to Prof. Dr. Ahmed A. Ammar, Prof. of Applied Geophysics and Head of Exploration Division, NMA, Egypt, for his continuous encouragement and fruitful discussion during this research work.

Thanks are also due to Dr. Husseim A. Hussein, Head of Geochemical Exploration Department, NMA, Egypt, and co-workers for their co-operation throughout the spectrometric laboratory work. Thanks are also due to Dr. Goda A. Dabbour, NMA, for providing the subsurface black-sand samples. Thanks are also due to Prof. Dr. Ahmed M. Khazback, Head of Ore Dressing Department, NMA, Egypt, for providing the composite black-sand sample.

Deep thanks are also due to my colleagues at Exploration Division, NMA, Egypt, especially Misters Adly A. Hosny, Moataz E. Elmanawi and Atef A. Mahmoud for their great assistance during the samples collection.

Finally, deep thanks are due to may family especially may mother for her sacrifice and continuous encouragement to carry out this work.

* * * * * * * * *

CONTENTS

Subject		Page
ABSTRACT		i
ACKNOWLED	OGMENTS	iii
CHAPTER I		
INTRO	ODUCTION	1
	1. General	1
	2. Location of Abu Khashaba Beach	2
	3. Topography of Abu Khashaba Beach	2
	4. Geology of Abu Khashaba Beach	5
	5. Aim and Scope of The Present Study	7
	6. Previous Works	9
CHAPTER II		
REVI	EW OF THE GENERAL GEOLOGY OF THE	
EGYP	PTIAN BLACK-SAND DEPOSITS	16
	Occurrence of The Black-Sand Deposits	16
	2. Genesis of The Egyptian Black-Sands	17
	3. Sedimentation Conditions of The Black - Sand	
	Deposits	18
	4. Enrichment of The Black-Sand Deposits	19
	5. Mineralogical Composition of The Beach Black	
	Sand Deposits	20
CHAPTER III	T .	
LABO	DRATORY GEOPHYSICAL TECHNIQUES	23
A. EL.	ECTROMAGNETIC CONDUCTIVITY TECHNIQUE	23
	1. General Considerations	23
	2. Real and Imaginary Components of The	
	Electromagnetic Field	26

Sub	ject
-----	------

3. Effect of Magnetic Permeability	27
4. Electromagnetic Conductivity Measurements	28
4.1. Instrumentation and theory of operation	28
4.2. Measuring procedure	30
4.3. Data reduction	30
B. MAGNETIC SUSCEPTIBILITY TECHNIQUE	34
1. General	34
2. Magnetic Susceptibility and Magnetism	35
3. Review of The Magnetic Susceptibility Measuring	
Techniques	37
4. Laboratory Magnetic Susceptibility Measurements	40
4.1. Instrumentation and theory of operation	40
4.2. Measuring procedure and data reduction.	41
C. GAMMA-RAY SPECTROMETRIC TECHNIQUE	43
1. Natural Radioactivity	43
2. Gamma-Rays and Significant Spectral Peaks	44
3. Laboratory Gamma-Ray Spectrometric Measurements	45
3.1. Instrumentation	47
3.2. Energy calibration	48
3.3. Sensitivity calibration	48
3.4. Laboratory gamma-ray assaying	49
CHAPTER IV	
PRESENTATION AND ANALYSIS OF THE LABORATORY	
GEOPHYSICAL DATA	51
A. PRESENTATION OF THE GEOPHYSICAL DATA	51
B. STATISTICAL ANALYSIS OF THE GEOPHYSICAL	
DATA	59
Single Variate Statistical Analysis	59

Page