

NONLINEAR ANALYSIS OF REINFORCED CONCRETE DEEP BEAMS

A Thesis Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by ENG. MOHAMED SAID ABDELHAFEZ MOHAMED GADO

B.Sc. in Civil Engineering, June 2009 Demonstrator, Higher Institute of Engineering, El Shorouk Academy

Supervisors

Prof. Dr. OMAR ALI MOUSA ELNAWAWI,

Professor of Reinforced Concrete Structures Faculty of Engineering, Ain Shams University, Cairo, EGYPT

PROF. DR. OSMAN MOHAMMED OSMAN RAMADAN,

Professor of Structural Analysis, Structural Engineering Dept., Faculty of Engineering, cairo University, Cairo, EGYPT

Dr. YASSER RAGAEE ZAGHLOUL

Structural Engineering Dept., The Higher Institute of Engineering, EL shrouk City, Cairo, EGYPT

NONLINEAR ANALYSIS OF REINFORCED CONCRETE DEEP BEAMS

A Thesis For The MSc. Degree in Civil Engineering STRUCTURAL ENGINEERING

ENG. MOHAMMED SAID ABDELHAFEZ MOHAMMED GADO

B.Sc. in Civil Engineering, June 2009 Higher Institute of Engineering – El Shorouk Academy

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Ahmed Mohamed Farahat	
Prof. Dr. Ahmed Hassan Ghallab	
Prof. Dr. Omar Ali Mousa El-Nawawi	
Prof. Dr. Osman Mohammed Osman Ramadan	

Date: 4/1/2017

DEDICATION

I wish to dedicate this work to who suffered to educate, support and encourage me during the thesis work

TO MY PARENTS,

MY WIFE, MY SISTER, AND MY BROTHERS

Also, I wish to dedicate my thesis to my Professors

PROF. DR. OSMAN MOHAMMED RAMADAN PROF. DR. OMAR ALI MOUSA ELNAWAWI

For the encouragement and support to complete this work.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Structural Engineering, Faculty of Engineering, Ain Shams University, from July 2012 to December 2017.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: 4/1 /2017

Signature: -----

Name: Mohammed Said Abd El Hafez Mohammed Gado

ACKNOWLEDGMENT

The candidate is deeply grateful to **Prof. Dr. Osman Mohammed Osman Ramadan**, Professor of Structural
Analysis and Mechanics, Faculty of Engineering, Cairo
University, for help, encourage, co-operation sponsoring and
patient advising during preparation of this work.

Also, great thanks to **Prof. Dr. Omar Ali Mousa Elnawawy,** Professor of reinforced concrete structures, Ain Shams University, for his help, and co-operation during the preparation of the study.

Also, great thanks to **Dr. Yasser Ragaee Zaghloul** Lecturer, Structural Engineering Dept., The Higher Institute of Engineering, EL shrouk City, for his help, and co-operation during the preparation of the study.

Ain Shams University Structural Engineering Department

Abstract of the M.S.C. Thesis Submitted by:

Eng: Mohammed Said AbdElHafez Mohammed Gado

Title of thesis

Nonlinear Analysis of Reinforced Concrete Deep Beams **SUPERVISORS**

Prof. Dr. Osman Mohammed osman Ramadan,

Prof. Dr. Omar Ali Mousa EL-Nawawy,

Dr. Yasser Ragaee Zaghloul

Investigation of fortified deep beams is a subject of an impressive enthusiasm for basic building. A deep beam is a shaft having a profundity that is similar to the traverse length. Deep beams regularly show up as move supports in elevated structures and also heap tops, establishment dividers, water tanks, canisters, folded plate rooftop structures, floor stomachs, shear dividers and sections or corbels. Never the less, most codes of practice do not give sufficient attention to the design of deep beams. This thesis provides a preview for previous studies in this field. Also, results of their previous studies are compared to estimate based on nonlinear finite element analysis using ANSYS. Many models for deep beams with different H/L ratios were made to reach a unified design approach for the deep beam. Finally, a comparison between the obtained results using the finite element analysis by (ANSYS) program and the proposed strut and tie model was made and a good agreement was obtained. The effect of shrinkage and temperature variation was studied.

TABLE OF CONTENTS

DED STA' ACK ABS' TAB LIST	TER ROVAL COMMETTI ICATION TEMENT NOWLEDGEMENT TRACT LE OF CONTENTS TOF FIGURES TOF TABLES	Page i ii iii iv v vi vii xiv
СНА	PTER 1: INTRODUCTION	
1.1		1
1.2	OBJECTIVE AND SCOPE	2
1.3	ORGANIZATION OF THESIS	2
	PTER 2: LITERATURE REVIEW	,
2.1		4
2.2		5
2.2.1	1	6
2.2.2	1	7
2.2.3	T T T T T T T T T T T T T T T T T T T	8
2.3	SHEAR STRENGTH OF DEEP BEAMS AS	
	RECOMMENDED BY SOME BUILDING	
	CODES	8
	ACI PROVISIONS	8
	EURO CODE 2-92 (13)	9
	BS 8110-97 (7)	10
2.3.4		11
2.4		
	CONCRETE (HSC) SIMPLY SUPPORTED DEEP	10
2.5	BEAM	13
2.5	SHEAR STRENGTH OF (HSC) SIMPLY SUPPORTED	22
	DEEP BEAMS WITH OPENINGS	23

CHAP	TER 3: FINITE ELEMENT MODEL	
3.1	INTRODUCTION	31
3.2	FINITE ELEMENT MODELING	31
3.3	ANSYS PROGRAM	33
3.3.1	Geometric nonlinearities	34
3.3.2	Material nonlinearities	35
3.4	TYPES OF ELEMENTS	36
3.4.1	Solid 65	36
3.4.2	Element link8	37
3.4.2.1	Assumptions and restrictions of	
	element [link8]	37
3.4.2.2	Input data of element [link8]	38
3.4.2.3	Output data of element [link8]	38
3.4.3	Solid 45	38
3.4.4	Modeling of reinforcement	39
СНАР	TER 4: VERIFICATION OF FINITE ELEMENT	
	MODEL	
4.1	GENERAL	40
4.3	VERIFICATION OF MODEL 1	42
4.3.1	Element Type	43
4.3.2	Real Constants	43
4.3.3	Material Properties	44
4.3.4	Modelling and meshing	45
4.3.5	Loading and Boundary Conditions	47
4.3.6	Nonlinear Solution	48
4.3	VERIFICATION OF MODEL 2	49
СНАР	TER 5: PARAMETRIC STUDY AND DISCUSSION	
	OF RESULTS	
5.1	INTRODUCTION	51
5.2	FIXED-FIXED REINFORCED CONCRETE DEEP	
	BEAMS	51
5.2.1	Dimensions of deep beams	51
5.2.2	Beam (1) at 100, 50, and 25% of Horizontal	
	Reinforcement Subjected to Point Load	52
5.2.2.1	Crack Pattern and Modes of Failure	52
5.2.2.2	Load – Mid Span Deflection Relationship	54
5.2.2.3	Stresses Variation in Horizontal Reinforcement According	
	to Changes of it's Percentage compared by Code Limit	55

5.2.3 Beam (1) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to two Point Load	57
5.2.3.1 Crack Pattern and Modes of Failure	57
5.2.3.2 Load – Mid Span Deflection Relationship	59
5.2.3.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	60
5.2.4 Beam (1) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to uniform Load	62
5.2.4.1 Crack Pattern and Modes of Failure	62
5.2.4.2 Load – Mid Span Deflection Relationship	65
5.2.4.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	66
5.2.5 Beam (2) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to Point Load	68
5.2.5.1 Crack Pattern and Modes of Failure	68
5.2.5.2 Load – Mid Span Deflection Relationship	70
5.2.5.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	71
5.2.6 Beam (2) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to two Point Load	73
5.2.6.1 Crack Pattern and Modes of Failure	73
5.2.6.2 Load – Mid Span Deflection Relationship	75
5.2.6.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	76
5.2.7 Beam (2) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to uniform Load	78
5.2.7.1 Crack Pattern and Modes of Failure	78
5.2.7.2 Load – Mid Span Deflection Relationship	81
5.2.7.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	82
5.2.8 Beam (3) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to Point Load	84
5.2.8.1 Crack Pattern and Modes of Failure	84
5.2.8.2 Load – Mid Span Deflection Relationship	86
5.2.8.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	87
5.2.9 Beam (3) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to two Point Load	89
5.2.9.1 Crack Pattern and Modes of Failure	89
5.2.9.2 Load – Mid Span Deflection Relationship	91
5.2.9.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	92

5.2.10 Beam (3) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to uniform Load	94
5.2.10.1 Crack Pattern and Modes of Failure	94
5.2.10.2 Load – Mid Span Deflection Relationship	97
5.2.10.3 Stresses Variation in Horizontal Reinforcement	
According to Changes of its Percentage compared by	
Code Limit	98
5.3 HINGED-HINGED REINFORCED CONCRETE DEEP	
BEAMS	101
5.3.1 Dimensions of deep beams	101
5.3.2 Beam (4) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to Point Load	101
5.3.2.1 Crack Pattern and Modes of Failure	101
5.3.2.2 Load – Mid Span Deflection Relationship	104
5.3.2.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	105
5.3.3 Beam (4) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to two Point Load	107
5.3.3.1 Crack Pattern and Modes of Failure	107
5.3.3.2 Load – Mid Span Deflection Relationship	109
5.3.3.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	110
5.3.4 Beam (4) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to uniform Load	112
5.3.4.1 Crack Pattern and Modes of Failure	112
5.3.4.2 Load – Mid Span Deflection Relationship	115
5.3.4.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	116
5.3.5 Beam (5) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to Point Load	116
5.3.5.1 Crack Pattern and Modes of Failure	116
5.3.5.2 Load – Mid Span Deflection Relationship	120
5.3.5.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	121
5.3.6 Beam (5) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to two Point Load	124
5.3.6.1 Crack Pattern and Modes of Failure	124
5.3.6.2 Load – Mid Span Deflection Relationship	126
5.3.6.3 Stresses Variation in Horizontal Reinforcement According	107
to Changes of it's Percentage compared by Code Limit	127
5.3.7 Beam (5) at 100, 50, and 25% of Horizontal	120
Reinforcement Subjected to uniform Load	130

5.3.7.1 Crack Pattern and Modes of Failure	130
5.3.7.2 Load – Mid Span Deflection Relationship	132
5.3.7.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	133
5.3.8 Beam (6) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to Point Load	136
5.3.8.1 Crack Pattern and Modes of Failure	136
5.3.8.2 Load – Mid Span Deflection Relationship	138
5.3.8.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	139
5.3.9 Beam (6) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to two Point Load	142
5.3.9.1 Crack Pattern and Modes of Failure	142
5.3.9.2 Load – Mid Span Deflection Relationship	144
5.3.9.3 Stresses Variation in Horizontal Reinforcement According	
to Changes of it's Percentage compared by Code Limit	145
5.3.10 Beam (6) at 100, 50, and 25% of Horizontal	
Reinforcement Subjected to uniform Load	148
5.3.10.1 Crack Pattern and Modes of Failure	148
5.3.10.2 Load – Mid Span Deflection Relationship	150
5.3.10.3 Stresses Variation in Horizontal Reinforcement	
According to Changes of it's Percentage compared by	
Code Limit	151
5.4 ANALYSIS OF DEEP BEAMS USING STRUT AND TIE	
METHOD	154
5.4.1 Fixed-Fixed Deep Beams	154
5.4.2 Hinged-Hinged Deep Beams	155
5.5 EFFECT OF SHRINKAGE AND TEMPERATURE	
VARIATION	156
5.5.1 Fixed-Fixed Deep Beams	156
5.5.2 Hinged-Hinged Deep Beams	157
5.6 Effect of Vertical Reinforcement Variation	160
CHAPTER 6: CONCLUSIONS	
6.1 Summary	162
6.2 RECOMMENDATIONS	164
6.3 FUTURE WORKS	165

166

REFERENCES

LIST OF FIGURES

Figure	Page
CHAPTER 2: LITERATURE REVIEW	
Fig. 2.1: Stress trajectories in B-regions and near discontinuities (D-	
regions)	6
Fig. 2.2: Typical crack pattern of deep beams	7
Fig. 2.3: Crack pattern for Deep beam	7
Fig. 2.4: Test specimen's elevation and cross section	15
Fig. 2.5: two specimens included mechanical anchorage	15
Fig. 2.6: Final crack patterns	16
Fig. 2.7: Two-span reinforced concrete deep beam	24
CHAPTER 3: FINITE ELEMENT MODEL	
Fig. 3.1: Large deflection small strain analysis	35
Fig. 3.2: Bilinear stress strain curve	35
Fig. 3.3: A Schematic of the Element for element Solid 65	36
Fig. 3.4: Input data of element LINK8	37
Fig. 3.5: Models of Reinforcement (a) discrete; (b) embedded; and (c)	39
smeared.	
CHAPTER 4: VERIFICATION OF FINITE ELEMENT	
MODEL	4.4
Fig. 4.1: Two-span reinforced concrete deep beam	41
Fig. 4.2: Geometric Mesh of Concrete, Steel Loading Plates, and	4.6
Steel Bearing plates.	46
Fig. 4.3: reinforcement configuration for model (1)	47
Fig. 4.4: model of boundary conditions and loading	48
Fig. 4.5: reinforcement configuration for model (2)	49
CHAPTER 5: PARAMETRIC STUDY AND DISCUSSION OF	
RESULTS	
Fig. 5.1: first crack for deep beam (1) subjected to point load at 100%	
of horizontal reinforcement	52
Fig. 5.2: crack pattern for deep beam (1) subjected to point load at	
100% of horizontal reinforcement	52
Fig. 5.3: first crack for deep beam (1) subjected to point load at 50%	5 0
of horizontal reinforcement	53
Fig. 5.4: crack pattern for deep beam (1) subjected to point load at	5 0
50% of horizontal reinforcement	53

Fig. 5.5: first crack for deep beam (1) subjected to point load at 25% of horizontal reinforcement	53
Fig. 5.6: crack pattern for deep beam (1) subjected to point load at	
25% of horizontal reinforcement	54
Fig. 5.7: Load - Deflection Relationship for Beam (1) Subjected to	
Point load at 100%, 50%, and 25% of horizontal	
reinforcement	54
101111111111111111111111111111111111111	
Fig. 5.8: Steel Stress Distribution in horizontal reinforcement at	
failure for beam (1) subjected to point load for various steel	
percentages	55
Fig. 5.9: first crack for deep beam (1) subjected to two point loads at	
100% of horizontal reinforcement	57
Fig. 5.10: crack pattern for deep beam (1) subjected to two point	
loads at 100% of horizontal reinforcement	58
Fig. 5.11: first crack for deep beam (1) subjected to two point loads at	
50% of horizontal reinforcement	58
Fig. 5.12: crack pattern for deep beam (1) subjected to two point	
loads at 50% of horizontal reinforcement	58
Fig. 5.13: first crack for deep beam (1) subjected to two point loads at	
25% of horizontal reinforcement	59
Fig. 5.14: crack pattern for deep beam (1) subjected to two point	
loads at 25% of horizontal reinforcement	59
Fig. 5.15: Load - Deflection Relationship for Beam (1) Subjected to	
two Point loads at 100%, 50%, and 25% of horizontal	
reinforcement	60
Fig. 5.16: Steel Stress Distribution in horizontal reinforcement at	
failure for beam (1) subjected to two point loads for various	
steel percentages	62
Fig. 5.17: first crack for deep beam (1) subjected to uniform load at	
100% of horizontal reinforcement	63
Fig. 5.18: crack pattern for deep beam (1) subjected to uniform load	
at 100% of horizontal reinforcement	63
Fig. 5.19: first crack for deep beam (1) subjected to uniform load at	
50% of horizontal reinforcement	63
Fig. 5.20: crack pattern for deep beam (1) subjected to uniform load	
at 50% of horizontal reinforcement	64
Fig. 5.21: first crack for deep beam (1) subjected to uniform load at	
25% of horizontal reinforcement	64
Fig. 5.22: crack pattern for deep beam (1) subjected to uniform load	
at 25% of horizontal reinforcement	64
Fig. 5.23: Load - Deflection Relationship for Beam (1) Subjected to	

uniform load at 100%, 50%, and 25% of horizontal	65
reinforcement Fig. 5.24: Steel Stress Distribution in horizontal reinforcement at	0.5
failure for beam (1) subjected to uniform load for various	
steel percentages	66
Fig. 5.25: first crack for deep beam (2) subjected to point load at	00
100% of horizontal reinforcement	68
Fig. 5.26: crack pattern for deep beam (2) subjected to point load at	
100% of horizontal reinforcement	68
Fig. 5.27: first crack for deep beam (2) subjected to point load at 50%	
of horizontal reinforcement	69
Fig. 5.28: crack pattern for deep beam (2) subjected to point load at	
50% of horizontal reinforcement	69
Fig. 5.29: first crack for deep beam (2) subjected to point load at 25%	60
of horizontal reinforcement	69
Fig. 5.30: crack pattern for deep beam (2) subjected to point load at 25% of horizontal reinforcement	70
Fig. 5.31: Load - Deflection Relationship for Beam (2) Subjected to	70
Point load at 100%, 50%, and 25% of horizontal	
reinforcement	70
Fig. 5.32: Steel Stress Distribution in horizontal reinforcement at	70
failure for beam (2) subjected to point load for various steel	
percentages	71
Fig. 5.33: first crack for deep beam (2) subjected to two point loads at	
100% of horizontal reinforcement	73
Fig. 5.34: crack pattern for deep beam (2) subjected to two point	
loads at 100% of horizontal reinforcement	74
Fig. 5.35: first crack for deep beam (2) subjected to two point loads at	
50% of horizontal reinforcement	74
Fig. 5.36: crack pattern for deep beam (2) subjected to two point	
loads at 50% of horizontal reinforcement	74
Fig. 5.37: first crack for deep beam (2) subjected to two point loads at	7.5
25% of horizontal reinforcement	75
Fig. 5.38: crack pattern for deep beam (2) subjected to two point loads at 25% of horizontal reinforcement	75
Fig. 5.39: Load - Deflection Relationship for Beam (2) Subjected to	13
two Point loads at 100%, 50%, and 25% of horizontal	
reinforcement	76
Fig. 5.40: Steel Stress Distribution in horizontal reinforcement at	70
failure for beam (2) subjected to two point loads for various	
steel percentages	78
Fig. 5.41: first crack for deep beam (2) subjected to uniform load at	
• • • • • • • • • • • • • • • • • • • •	

100% of horizontal reinforcement	79
Fig. 5.42: crack pattern for deep beam (2) subjected to uniform load	
at 100% of horizontal reinforcement	79
Fig. 5.43: first crack for deep beam (2) subjected to uniform load at 50% of horizontal reinforcement	79
Fig. 5.44: crack pattern for deep beam (2) subjected to uniform load	1)
at 50% of horizontal reinforcement	80
Fig. 5.45: first crack for deep beam (2) subjected to uniform load at 25% of horizontal reinforcement	80
Fig. 5.46: crack pattern for deep beam (2) subjected to uniform load	
at 25% of horizontal reinforcement	80
Fig. 5.47: Load - Deflection Relationship for Beam (2) Subjected to uniform load at 100%, 50%, and 25% of horizontal reinforcement	81
Fig. 5.48: Steel Stress Distribution in horizontal reinforcement at	01
failure for beam (2) subjected to uniform load for various steel percentages	82
Fig. 5.49: first crack for deep beam (3) subjected to point load at	62
100% of horizontal reinforcement	84
Fig. 5.50: crack pattern for deep beam (3) subjected to point load at 100% of horizontal reinforcement	84
Fig. 5.51: first crack for deep beam (3) subjected to point load at 50%	0.
of horizontal reinforcement	85
Fig. 5.52: crack pattern for deep beam (3) subjected to point load at	
50% of horizontal reinforcement	85
Fig. 5.53: first crack for deep beam (3) subjected to point load at 25% of horizontal reinforcement	85
Fig. 5.54: crack pattern for deep beam (3) subjected to point load at 25% of horizontal reinforcement	86
Fig. 5.55: Load - Deflection Relationship for Beam (3) Subjected to	
Point load at 100%, 50%, and 25% of horizontal	
reinforcement	86
Fig. 5.56: Steel Stress Distribution in horizontal reinforcement at	
failure for beam (3) subjected to point load for various steel percentages	87
Fig. 5.57: first crack for deep beam (3) subjected to two point loads at	
100% of horizontal reinforcement	89
Fig. 5.58: crack pattern for deep beam (3) subjected to two point	
loads at 100% of horizontal reinforcement	89
Fig. 5.59: first crack for deep beam (3) subjected to two point loads at	
50% of horizontal reinforcement	90
Fig. 5.60: crack pattern for deep beam (3) subjected to two point	