

A NOVEL ALGORITHM FOR FUZZY-GENETIC DISTRIBUTED DATA MINING

By

Hassan Ahmed Hassan M. Abounaser

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Computer Engineering

A NOVEL ALGORITHM FOR FUZZY-GENETIC DISTRIBUTED DATA MINING

By

Hassan Ahmed Hassan M. Abounaser

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in Computer Engineering

Under the Supervision of

Prof. Dr. Ihab El-Sayed Talkhan

Prof. Dr. Ahmed Fahmy Amin

Professor
Head of Computer Engineering Department
Fauculty of Engineering
Cairo University

Professor,
Computer Engineering Department
College of Engineering & Technology
Arab Academy for Science, Technology &
Maritime Transport (AASTMT), Cairo

A NOVEL ALGORITHM FOR FUZZY-GENETIC DISTRIBUTED DATA MINING

By

Hassan Ahmed Hassan M. Abounaser

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in Computer Engineering

Approved by the Examining Committee

Prof. Dr. Ihab El-Sayed Talkhan, Thesis Main Advisor

Prof. Dr. Ahmed Fahmy, Member Professor, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Cairo

Prof. Dr. Mohamed Zaki Abd El-Magid, Examiner Professor, Faculty of Engineering, Al Azhar University

Prof. Dr. Amr Anwar Badr, External Examiner Professor, Faculty of Computers and Information, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Engineer: Hassan Ahmed Hassan M. Abounaser

Date of Birth: 23 / 7 / 1979 **Nationality:** Palestinian

E-mail: hassan.abounasser@aast.edu

Phone: +201006620848

Address: 3078b, Zahraa- Nasr City, Cairo, Egypt

Registration Date: 1/10/2010

Awarding Date: 2 / 2 / 2017

Degree: Doctor of Philosophy

Department: Computer Engineering

Supervisors: Prof. Dr. Ihab El-Sayed Talkhan

Prof. Dr. Ahmed Fahmy Amin

Professor, College of Engineering & Technology- Arab Academy for Science, Technology & Maritime Transport (AASTMT), Cairo

Examiners: Prof. Dr. Amr Anwar Badr (External Examiner)

Professor, Faculty of Computers and Information, Cairo University

Prof. Dr. Mohamed Zaki Abd El-Magid (Examiner) Professor, Faculty of Engineering, Al Azhar University

Prof. Dr. Ihab El-Sayed Talkhan (Thesis Main Advisor)

Prof. Dr. Ahmed Fahmy Amin (Member)

Title of Thesis: A Novel Algorithm For Fuzzy-Genetic Distributed Data Mining

Key Words:- Fuzzy Classification; Rule-base; Fuzzy Logic System (FLS);

Genetic Algorithm (GA); Distributed Data Mining (DDM)

Summary:

A novel framework for a Parallel Fuzzy-Genetic Algorithm (PFGA) has been developed for classification and prediction over decentralized data sources as a main contribution to the scientific community. The model parameters are evolved using two nested genetic algorithms (GAs). The outer GA evolves the fuzzy sets whereas the inner GA evolves the fuzzy rules. During optimization, best rules are only distributed and exchanged among agents to construct the overall optimized model. Several experiments have been conducted and show that the developed model has good accuracy and more efficient in performance and comprehensibility of linguistic rules compared to some models implemented in KEEL software tool.

Acknowledgements

I would like gratefully to acknowledge all the following people who for various reasons were involved in contributing to this work, and for the help and time, they have given me over the work of this thesis.

First, I would like to thank my supervising committee, Prof. Ihab Talkhan and Prof. Ahmed Fahmy. This work would never have been successfully completed without their help, guidance and continuous support.

Second, special thanks go to my family for their love, patience, care and support during the period I spent working on this thesis. In particular, I would like to thank my parents for their endless encouragement, understanding and support.

Third, thanks also go to the staff of the Computer Engineering Department in AASTMT for the enlightening discussions and observations they made. In particular, I would like to thank Dr. Sherif Fadel for his valuable comments, suggestions and advice.

A final word of thanks is owed to my best friends, particularly, Dr. Mohamed Almoghalis, for his valuable support and advice.

Sincerely,

Hassan Ahmed Hassan M. Abounaser

Dedication

This thesis work is dedicated to my dear parents, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve. This work is also dedicated to my lovely brothers and sisters who have been a constant source of support and encouragement during the challenges of life. I am truly thankful for having you in my life.

Table of Contents

ACK	NOWLEDGMENTS	I
DEDI	CATION	II
TABI	LE OF CONTENTS.	III
LIST	OF TABLES	V
LIST	OF FIGURES.	VI
LIST	OF ABBREVIATIONS.	XI
ABST	TRACT	XIII
CHAI	PTER 1: INTRODUCTION	1
1.1.	OVERVIEW	1
1.2.	MOTIVATION	1
1.3.	THE CHALLENGES IN DATA MINING	4
1.4.	THESIS OBJECTIVES.	6
1.5.	THESIS ORGANIZATION	6
	PTER 2: LITERATURE REVIEW	
2.1.	OVERVIEW	8
2.2.	EVOLUTION OF DATA MINING STRATEGIES	8
	2.2.1. CENTRALIZED APPROACH.	8
	2.2.2. PARALLEL APPROACH.	10
	2.2.3. DISTRIBUTED APPROACH.	11
2.3.	RELATED WORK	13
	PTER 3: FUZZY LOGIC SYSTEMS	
3.1.	OVERVIEW	16
3.2.	FUZZY SET THEORY	16
3.3.	APPLICATIONS OF FUZZY LOGIC SYSTEMS	17
3.4.	COMPONENTS OF A FUZZY LOGIC SYSTEM	18
	3.4.1. FUZZIFIER	18
	3.4.2. KNOWLEDGE BASE	18
	3.4.3. FUZZY INFERENCE ENGINE	19
	3.4.4. DEFUZZIFIER.	19
3.5.	FUZZY KNOWLEDGE BASE REPRESENTATION METHODOLOGY	19
	3.5.1. CONDITIONAL-SENTENCES REPRESENTATION METHOD	19
	3.5.2. FAM MATRIX REPRESENTATION METHOD.	20

3.6.	PARALLELISM OF A FUZZY LOGIC SYSTEM	21
3.7.	MAMDANI FUZZY LOGIC SYSTEM	22
3.8.	DESIGN APPROACHES FOR A FUZZY LOGIC SYSTEM	22
CHAI	PTER 4: OPTIMIZATION USING EVOLUTIONARY ALGORITHMS	24
4.1.	OVERVIEW	24
4.2.	GENETIC ALGORITHMS THEORY	24
	4.2.1. APPLICATIONS OF GENETIC ALGORITHMS	25
	4.2.2. CANONICAL GENETIC ALGORITHM	25
CHAI	PTER 5: PROPOSED SYSTEMS	28
5.1.	OVERVIEW	28
5.2.	FUZZY LOGICCLASSIFIER AND PREDICTOR	28
	5.2.1. MEMBERSHIP FUNCTIONS DESIGN	29
	5.2.2. RULE-BASE REPRESENTATION METHODOLOGY	29
	5.2.3. INFERENCE ENGINE AND DEFUZZIFICATION TECHNIQUE UTILIZED	30
5.3.	PROPOSED FUZZY-GENETIC SYSTEM	31
	5.3.1 EVOLVED FUZZY LOGIC CLASSIFIER AND PREDICTOR	31
	5.3.2 FUZZY-GENETIC ALGORITHM AGENT	31
	5.3.3 PARALLEL FUZZY-GENETIC FRAMEWORK STRUCTURE	37
CHAI	PTER 6: RESULTS AND DISCUSSION	40
6.1.	OVERVIEW	40
6.2.	RESULTS	40
6.3.	DISCUSSION	41
6.4.	CASE STUDY	61
CHAI	PTER 7: CONCLUSIONS	67
7.1.	CONCLUSION AND RECOMMENDATIONS	67
7.2.	FUTURE WORK	67
REFE	ERENCES	69
	CNDIX A: INFORMATION REPRESENTATION AND PROCESSING	
A DDD	POACHES	77

List of Tables

Table 2.1:	List of top 10 Algorithms in DM research community	9
Table 2.2 :	Taxonomy of DDM Algorithms in DM research community	12
Table 6.1 :	List of datasets employed in experiments	40
Table 6.2 :	Results of PFGA framework versus FH-GBML and GFS-RB-MF algorithms when $N_1 \! = \! N_2 \! = \! 20$, $N_g \! = \! 500$, and $N_a \! = \! 5$.	57
Table 6.3 :	Results of PFGA framework versus FH-GBML and GFS-RB-MF algorithms when $N_1 \! = \! N_2 \! = \! 20$, $N_g \! = \! 500$, and $N_a \! = \! 10$.	58
Table 6.4 :	Results of PFGA framework versus FH-GBML and GFS-RB-MF algorithms when $N_1\!\!=\!\!N_2\!\!=\!\!40,N_g\!\!=\!\!1000,$ and $N_a\!\!=\!\!5.$	59
Table 6.5:	Results of PFGA framework versus FH-GBML and GFS-RB-MF algorithms when $N_1 \!\!=\!\! N_2 \!\!=\!\! 40$, $N_g \!\!=\!\! 1000$, and $N_a \!\!=\!\! 10$.	60
Table 6.6:	Assumed integer keys for fuzzy sets as a sample case study	63
	Comparison between different Information Representation Approaches	78

List of Figures

Figure 1.1:	The brief structure of a Data Mining System as a centralized data model in distributed environment from classical technique's perspective	
Figure 2.1:	The brief structure of a Data Mining System in centralized approach	8
Figure 2.2:	The brief structure of a Data Mining System in Distributed approach	11
Figure 3.1:	The structure of a Fuzzy Logic System (FLS) and its components interconnections	18
Figure 3.2:	A two-dimensional FAM matrix structure	20
Figure 3.3:	Example of membership functions for fuzzy sets (a) Trapezoid, (b) Triangular, (c) Logistic, and (d) Bell Shape	21
Figure 4.1:	A flow chart illustrates the Canonical GA	26
Figure 5.1:	The brief structure of a FGA agent constructing its local model from the dataset.	31
Figure 5.2:	The structure of nested GAs that evolves local model parameters of FGA agent.	32
Figure 5.3:	Example of designing inner GA chromosome encoding rule-base of 3 fuzzy rules.	
Figure 5.4:	Example of single-point crossover operation in inner GA where crossover points can be different positions	34
Figure 5.5:	Example of designing a structure encoding 3 fuzzy sets defined by triangular membership functions utilized for continuous input attribute	35
Figure 5.6:	The general structure of outer GA chromosome encoding fuzzy sets utilized in all dataset attributes along with its class attribute y	35
Figure 5.7:	Single-point crossover operation in outer GA where crossover points must have identical position	36

Figure 5.8:	The detailed structure of a FGA agent constructing its local model from the dataset.	36
Figure 5.9:	The structure of PFGA that accepts a datasets distributed over distributed and decentralized data sources and construct the final model from the cooperative local models of FGA agents.	37
Figure 5.10:	PFGA pseudo-code	38
Figure 5.11:	A flow chart illustrates the Parallel Fuzzy-Genetic Algorithm (PFGA) for classification and prediction in distributed environment.	39
Figure 6.1:	Example of best fitness data for N_1 = N_2 =20 using "banana" dataset for N_g =500 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	42
Figure 6.2:	Example of best fitness data for N_1 = N_2 =20 using "banana" dataset for N_g =500 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	42
Figure 6.3:	Example of best fitness data for N_1 = N_2 =40 using "banana" dataset for N_g =1000 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	44
Figure 6.4:	Example of best fitness data for N_1 = N_2 =40 using "banana" dataset for N_g =1000 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	44
Figure 6.5:	Example of best fitness data for $N_1=N_2=20$ using "haberman" dataset for $N_g=500$ and $N_a=5$ showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	45
Figure 6.6:	Example of best fitness data for $N_1=N_2=20$ using "haberman" dataset for $N_g=500$ and $N_a=10$ showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	45

Figure 6.7:	Example of best fitness data for $N_1=N_2=40$ using "haberman" dataset for $N_g=1000$ and $N_a=5$ showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	46
Figure 6.8:	Example of best fitness data for N_1 = N_2 =40 using "haberman" dataset for N_g =1000 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	46
Figure 6.9:	Example of best fitness data for N_1 = N_2 =20 using "saheart" dataset for N_g =500 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm	48
Figure 6.10:	Example of best fitness data for N_1 = N_2 =20 using "saheart" dataset for N_g =500 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	48
Figure 6.11:	Example of best fitness data for N_1 = N_2 =20 using "saheart" dataset for N_g =500 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm	49
Figure 6.12:	Example of best fitness data for N_1 = N_2 =20 using "saheart" dataset for N_g =500 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	49
Figure 6.13:	Example of best fitness data for N_1 = N_2 =40 using "saheart" dataset for N_g =1000 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm	50
Figure 6.14:	Example of best fitness data for N_1 = N_2 =40 using "saheart" dataset for N_g =1000 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	50
Figure 6.15:	Example of best fitness data for N_1 = N_2 =40 using "saheart" dataset for N_g =1000 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm	51

Figure 6.16:	Example of best fitness data for N_1 = N_2 =40 using "saheart" dataset for N_g =1000 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	51
Figure 6.17:	Example of best fitness data for N_1 = N_2 =20 using "car" dataset for N_g =500 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	52
Figure 6.18:	Example of best fitness data for N_1 = N_2 =20 using "car" dataset for N_g =500 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	52
Figure 6.19:	Example of best fitness data for N_1 = N_2 =40 using "car" dataset for N_g =1000 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	54
Figure 6.20:	Example of best fitness data for N_1 = N_2 =40 using "car" dataset for N_g =1000 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus FH-GBML algorithm	54
Figure 6.21:	Example of best fitness data for N_1 = N_2 =20 using "plastic" dataset for N_g =500 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus GFS-RB-MF algorithm	55
Figure 6.22:	Example of best fitness data for N_1 = N_2 =20 using "plastic" dataset for N_g =500 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus GFS-RB-MF algorithm	55
Figure 6.23:	Example of best fitness data for N_1 = N_2 =40 using "plastic" dataset for N_g =1000 and N_a =5 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus GFS-RB-MF algorithm	56
Figure 6.24:	Example of best fitness data for N_1 = N_2 =40 using "plastic" dataset for N_g =1000 and N_a =10 showing the relative effect of different best fuzzy rules exchange policies on the developed algorithm versus GFS-RB-MF algorithm	56

Figure 6.25:	10 selected tuples from "plastic" real-world dataset showing the minimum (min) and maximum (max) for each attribute range as a sample case study	61
Figure 6.26:	Fuzzy sets for each dataset attribute as a sample case study	62
Figure 6.27:	Outer GA population composed of 2 chromosomes showing their structures as a sample case study	62
Figure 6.28:	Outer GA population composed of 2 chromosomes showing their assumed initial random values as a sample case study	63
Figure 6.29:	Inner GA population composed of 2 chromosomes showing their assumed initial random values as a sample case study	64
Figure 6.30:	The structure of PFGA that accepts a "plastic" real-world distributed datasets as a sample case study	66

List of Abbreviations

ACO : Ant Colony Optimization

AdaBoost : Adaptive Boosting

AI : Artificial Intelligence

AIS : Artificial Immune System
ANN : Artificial Neural Network
ARM : Association Rules Mining

BOAT : Bootstrapped Optimistic Algorithm for Tree construction

CART : Classification And Regression Trees

CBR : Case-Based Reasoning

CI : Computational Intelligence

CoA : Center of Area

CoG : Center of Gravity

CUDA : Compute Unified Device Architecture

DDM : Distributed Data MiningDHT : Distributed Hash Table

DM : Data Mining

EC : Evolutionary Computing
 EM : Expectation-Maximization
 FAM : Fuzzy Associative Memory
 FGA : Fuzzy-Genetic Algorithm

FH-GBML: Fuzzy Hybrid Genetic-Based Machine Learning

FLS : Fuzzy Logic System

FS : Fuzzy Set

GA : Genetic Algorithm

GFS-RB-MF : Genetic-base Fuzzy Rule Base Construction and Membership Function tuning

GPU : Graphics Processing Unit

KB : Knowledge Base

KDD : Knowledge Discovery from Data

KEEL: Knowledge Extraction Based on Evolutionary Learning